BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24753508)

  • 21. Fluorescence in situ hybridisation in the cytological diagnosis of pancreatobiliary tumours.
    Boldorini R; Paganotti A; Sartori M; Allegrini S; Miglio U; Orsello M; Veggiani C; Del Piano M; Monga G
    Pathology; 2011 Jun; 43(4):335-9. PubMed ID: 21519286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Fluorescent In Situ Hybridization, Cholangioscopic Biopsies, and EUS-FNA in the Evaluation of Biliary Strictures.
    Brooks C; Gausman V; Kokoy-Mondragon C; Munot K; Amin SP; Desai A; Kipp C; Poneros J; Sethi A; Gress FG; Kahaleh M; Murty VV; Sharaiha R; Gonda TA
    Dig Dis Sci; 2018 Mar; 63(3):636-644. PubMed ID: 29353443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multitarget fluorescence in situ hybridization elucidates equivocal lung cytology.
    Savic S; Glatz K; Schoenegg R; Spieler P; Feichter G; Tamm M; Bubendorf L
    Chest; 2006 Jun; 129(6):1629-35. PubMed ID: 16778285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced cytologic techniques for the detection of malignant pancreatobiliary strictures.
    Moreno Luna LE; Kipp B; Halling KC; Sebo TJ; Kremers WK; Roberts LR; Barr Fritcher EG; Levy MJ; Gores GJ
    Gastroenterology; 2006 Oct; 131(4):1064-72. PubMed ID: 17030177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of malignant cytologic criteria in pancreatobiliary brushings with corresponding positive fluorescence in situ hybridization results.
    Barr Fritcher EG; Caudill JL; Blue JE; Djuric K; Feipel L; Maritim BK; Ragheb AA; Halling KC; Henry MR; Clayton AC
    Am J Clin Pathol; 2011 Sep; 136(3):442-9. PubMed ID: 21846921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of fluorescence in situ hybridization in biliary brushings with equivocal cytology: an institutional experience.
    Miller LJ; Holmes IM; Chen-Yost HI; Smola B; Lew M; Betz BL; Brown NA; Pang J
    J Am Soc Cytopathol; 2024; 13(4):285-290. PubMed ID: 38589274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of chromosomal aberrations in patients with benign conditions and reactive changes in urinary cytology.
    Tapia C; Glatz K; Obermann EC; Grilli B; Barascud A; Herzog M; Schönegg R; Savic S; Bubendorf L
    Cancer Cytopathol; 2011 Dec; 119(6):404-10. PubMed ID: 21732550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Paris System for reporting urinary cytology in daily practice with emphasis on ancillary testing by multiprobe FISH.
    Vlajnic T; Gut A; Savic S; Bubendorf L
    J Clin Pathol; 2020 Feb; 73(2):90-95. PubMed ID: 31467041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Standardized terminology and nomenclature for pancreatobiliary cytology: the Papanicolaou Society of Cytopathology guidelines.
    Pitman MB; Centeno BA; Ali SZ; Genevay M; Stelow E; Mino-Kenudson M; Fernandez-del Castillo C; Max Schmidt C; Brugge W; Layfield L;
    Diagn Cytopathol; 2014 Apr; 42(4):338-50. PubMed ID: 24554455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diagnostic value of K-ras mutation analysis for pancreaticobiliary cytology specimens with indeterminate diagnosis.
    Cai G; Mahooti S; Lipata FM; Chhieng D; Hui P
    Cancer Cytopathol; 2012 Oct; 120(5):313-8. PubMed ID: 22367918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced cytologic approaches for the diagnosis of pancreatobiliary cancer.
    Fritcher EG; Halling KC
    Curr Opin Gastroenterol; 2010 May; 26(3):259-64. PubMed ID: 20393279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficacy of two fluorescence in situ hybridization (FISH) probes for diagnosing malignant pleural effusions.
    Rosolen DC; Kulikowski LD; Bottura G; Nascimento AM; Acencio M; Teixeira L; Vargas FS; Sales RK; Antonangelo L
    Lung Cancer; 2013 Jun; 80(3):284-8. PubMed ID: 23453645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of microRNA expression in brush cytology specimens improves the diagnosis of pancreatobiliary cancer.
    Le N; Fillinger J; Szanyi S; Wichmann B; Nagy ZB; Ivády G; Burai M; Tarpay Á; Pozsár J; Pap Á; Molnár B; Csuka O; Bak M; Tulassay Z; Szmola R
    Pancreatology; 2019 Sep; 19(6):873-879. PubMed ID: 31400934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multivariable model using advanced cytologic methods for the evaluation of indeterminate pancreatobiliary strictures.
    Fritcher EG; Kipp BR; Halling KC; Oberg TN; Bryant SC; Tarrell RF; Gores GJ; Levy MJ; Clayton AC; Sebo TJ; Roberts LR
    Gastroenterology; 2009 Jun; 136(7):2180-6. PubMed ID: 19232347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Fluorescence In Situ Hybridization in Pancreatobiliary Brushing Cytology: A Large Retrospective Review with Histologic Correlation.
    Khan J; la Sancha C; Saad M; Alkashash A; Ullah A; Alruwaii F; Velasquez Zarate L; Cramer HM; Wu HH
    Diagnostics (Basel); 2022 Oct; 12(10):. PubMed ID: 36292175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next-Generation Sequencing and Fluorescence in Situ Hybridization Have Comparable Performance Characteristics in the Analysis of Pancreaticobiliary Brushings for Malignancy.
    Dudley JC; Zheng Z; McDonald T; Le LP; Dias-Santagata D; Borger D; Batten J; Vernovsky K; Sweeney B; Arpin RN; Brugge WR; Forcione DG; Pitman MB; Iafrate AJ
    J Mol Diagn; 2016 Jan; 18(1):124-30. PubMed ID: 26596524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repeated endoscopic ultrasound guided fine needle aspiration (EUS-FNA) improved diagnostic yield of inconclusive initial cytology for suspected pancreatic cancer and unknown intra-abdominal lymphadenopathy.
    Prachayakul V; Sriprayoon T; Asawakul P; Pongprasobchai S; Pausawasdi N; Kachintorn U
    J Med Assoc Thai; 2012 Feb; 95 Suppl 2():S68-74. PubMed ID: 22574532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surveillance of patients with bladder carcinoma using fluorescent in-situ hybridization on bladder washings.
    Bergman J; Reznichek RC; Rajfer J
    BJU Int; 2008 Jan; 101(1):26-9. PubMed ID: 17850364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlating routine cytology, quantitative nuclear morphometry by digital image analysis, and genetic alterations by fluorescence in situ hybridization to assess the sensitivity of cytology for detecting pancreatobiliary tract malignancy.
    Barr Fritcher EG; Kipp BR; Slezak JM; Moreno-Luna LE; Gores GJ; Levy MJ; Roberts LR; Halling KC; Sebo TJ
    Am J Clin Pathol; 2007 Aug; 128(2):272-9. PubMed ID: 17638662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preliminary experience comparing routine cytology results with the composite results of digital image analysis and fluorescence in situ hybridization in patients undergoing EUS-guided FNA.
    Levy MJ; Clain JE; Clayton A; Halling KC; Kipp BR; Rajan E; Roberts LR; Root RM; Sebo TJ; Topazian MD; Wang KK; Wiersema MJ; Gores GJ
    Gastrointest Endosc; 2007 Sep; 66(3):483-90. PubMed ID: 17725938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.