These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 2475356)
1. M-phase-specific protein kinase from mitotic sea urchin eggs: cyclic activation depends on protein synthesis and phosphorylation but does not require DNA or RNA synthesis. Arion D; Meijer L Exp Cell Res; 1989 Aug; 183(2):361-75. PubMed ID: 2475356 [TBL] [Abstract][Full Text] [Related]
2. Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase. Meijer L; Arion D; Golsteyn R; Pines J; Brizuela L; Hunt T; Beach D EMBO J; 1989 Aug; 8(8):2275-82. PubMed ID: 2551679 [TBL] [Abstract][Full Text] [Related]
3. Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions. Meijer L; Pondaven P Exp Cell Res; 1988 Jan; 174(1):116-29. PubMed ID: 2826194 [TBL] [Abstract][Full Text] [Related]
4. Cyclin B targets p34cdc2 for tyrosine phosphorylation. Meijer L; Azzi L; Wang JY EMBO J; 1991 Jun; 10(6):1545-54. PubMed ID: 1709096 [TBL] [Abstract][Full Text] [Related]
5. cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Arion D; Meijer L; Brizuela L; Beach D Cell; 1988 Oct; 55(2):371-8. PubMed ID: 2844417 [TBL] [Abstract][Full Text] [Related]
6. M-phase-specific histone H1 kinase in fish oocytes. Purification, components and biochemical properties. Yamashita M; Fukada S; Yoshikuni M; Bulet P; Hirai T; Yamaguchi A; Yasuda H; Ohba Y; Nagahama Y Eur J Biochem; 1992 Apr; 205(2):537-43. PubMed ID: 1315270 [TBL] [Abstract][Full Text] [Related]
7. Activation of M-phase-specific histone H1 kinase by modification of the phosphorylation of its p34cdc2 and cyclin components. Pondaven P; Meijer L; Beach D Genes Dev; 1990 Jan; 4(1):9-17. PubMed ID: 2155162 [TBL] [Abstract][Full Text] [Related]
8. A new screening test for antimitotic compounds using the universal M phase-specific protein kinase, p34cdc2/cyclin Bcdc13, affinity-immobilized on p13suc1-coated microtitration plates. Rialet V; Meijer L Anticancer Res; 1991; 11(4):1581-90. PubMed ID: 1660692 [TBL] [Abstract][Full Text] [Related]
9. A cyclin-abundance cycle-independent p34cdc2 tyrosine phosphorylation cycle in early sea urchin embryos. Edgecombe M; Patel R; Whitaker M EMBO J; 1991 Dec; 10(12):3769-75. PubMed ID: 1834459 [TBL] [Abstract][Full Text] [Related]
10. Temporal regulation of cdc2 mitotic kinase activity and cyclin degradation in cell-free extracts of Xenopus eggs. Felix MA; Pines J; Hunt T; Karsenti E J Cell Sci Suppl; 1989; 12():99-116. PubMed ID: 2561427 [TBL] [Abstract][Full Text] [Related]
11. Activation of protein kinase C alters p34(cdc2) phosphorylation state and kinase activity in early sea urchin embryos by abolishing intracellular Ca2+ transients. Suprynowicz FA; Groigno L; Whitaker M; Miller FJ; Sluder G; Sturrock J; Whalley T Biochem J; 2000 Jul; 349(Pt 2):489-99. PubMed ID: 10880348 [TBL] [Abstract][Full Text] [Related]
12. Dependence of timing of mitotic events on the rate of protein synthesis and DNA replication in sea urchin early cleavages. Yamada K Cell Prolif; 1998; 31(5-6):203-15. PubMed ID: 9925988 [TBL] [Abstract][Full Text] [Related]
13. eIF4E-binding proteins are differentially modified after ammonia versus intracellular calcium activation of sea urchin unfertilized eggs. Oulhen N; Mulner-Lorillon O; Cormier P Mol Reprod Dev; 2010 Jan; 77(1):83-91. PubMed ID: 19777548 [TBL] [Abstract][Full Text] [Related]
14. Cdk2 activity is dispensable for the onset of DNA replication during the first mitotic cycles of the sea urchin early embryo. Moreau JL; Marques F; Barakat A; Schatt P; Lozano JC; Peaucellier G; Picard A; Genevière AM Dev Biol; 1998 Aug; 200(2):182-97. PubMed ID: 9705226 [TBL] [Abstract][Full Text] [Related]
15. Relationships between DNA synthesis and mitotic events in fertilized sea urchin eggs: aphidicolin inhibits DNA synthesis, nuclear breakdown and proliferation of microtubule organizing centers, but not cycles of microtubule assembly. Nishioka D; Balczon R; Schatten G Cell Biol Int Rep; 1984 Apr; 8(4):337-46. PubMed ID: 6428758 [TBL] [Abstract][Full Text] [Related]
16. Different routes lead to apoptosis in unfertilized sea urchin eggs. Philippe L; Tosca L; Zhang WL; Piquemal M; Ciapa B Apoptosis; 2014 Mar; 19(3):436-50. PubMed ID: 24337868 [TBL] [Abstract][Full Text] [Related]
17. The role of cap methylation in the translational activation of stored maternal histone mRNA in sea urchin embryos. Caldwell DC; Emerson CP Cell; 1985 Sep; 42(2):691-700. PubMed ID: 2411426 [TBL] [Abstract][Full Text] [Related]
18. Studies on fertilization of the teleost. II. Nuclear behavior and changes in histone H1 kinase. Iwamatsu T; Shibata Y; Yamashita M Dev Growth Differ; 1999 Aug; 41(4):473-82. PubMed ID: 10466935 [TBL] [Abstract][Full Text] [Related]
19. The release from metaphase arrest in blue mussel oocytes. Néant I; Dufresne L; Morasse J; Gicquaud C; Guerrier P; Dubé F Int J Dev Biol; 1994 Sep; 38(3):513-23. PubMed ID: 7848835 [TBL] [Abstract][Full Text] [Related]
20. The relationship between calcium, MAP kinase, and DNA synthesis in the sea urchin egg at fertilization. Carroll DJ; Albay DT; Hoang KM; O'Neill FJ; Kumano M; Foltz KR Dev Biol; 2000 Jan; 217(1):179-91. PubMed ID: 10625545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]