These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24753732)

  • 1. Coaxial flow focusing in poly(dimethylsiloxane) microfluidic devices.
    Tran TM; Cater S; Abate AR
    Biomicrofluidics; 2014 Jan; 8(1):016502. PubMed ID: 24753732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Generation of All-Aqueous Double and Triple Emulsions.
    Jeyhani M; Thevakumaran R; Abbasi N; Hwang DK; Tsai SSH
    Small; 2020 Feb; 16(7):e1906565. PubMed ID: 31985166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile reconfigurable glass capillary microfluidic devices with Lego® inspired blocks for drop generation and micromixing.
    Bandulasena MV; Vladisavljević GT; Benyahia B
    J Colloid Interface Sci; 2019 Apr; 542():23-32. PubMed ID: 30721833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations.
    Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L
    J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles.
    Kang E; Shin SJ; Lee KH; Lee SH
    Lab Chip; 2010 Jul; 10(14):1856-61. PubMed ID: 20454720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic generation of droplets with a high loading of nanoparticles.
    Wan J; Shi L; Benson B; Bruzek MJ; Anthony JE; Sinko PJ; Prudhomme RK; Stone HA
    Langmuir; 2012 Sep; 28(37):13143-8. PubMed ID: 22934976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of microfluidic systems in poly(dimethylsiloxane).
    McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM
    Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentric Capillary Microfluidic Devices Designed for Robust Production of Multiple-Emulsion Droplets.
    Oh Y; Kim SH
    Langmuir; 2024 Sep; 40(36):19166-19175. PubMed ID: 39183643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable nonpolar solvent droplet generation using a poly(dimethylsiloxane) microfluidic channel coated with poly-p-xylylene for a nanoparticle growth.
    Lim H; Moon S
    Biomed Microdevices; 2015 Aug; 17(4):70. PubMed ID: 26112614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions.
    Nawar S; Stolaroff JK; Ye C; Wu H; Nguyen DT; Xin F; Weitz DA
    Lab Chip; 2020 Jan; 20(1):147-154. PubMed ID: 31782446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torque-actuated valves for microfluidics.
    Weibel DB; Kruithof M; Potenta S; Sia SK; Lee A; Whitesides GM
    Anal Chem; 2005 Aug; 77(15):4726-33. PubMed ID: 16053282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices.
    Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K
    Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDMS-based turbulent microfluidic mixer.
    You JB; Kang K; Tran TT; Park H; Hwang WR; Kim JM; Im SG
    Lab Chip; 2015 Apr; 15(7):1727-35. PubMed ID: 25671438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem emulsification for high-throughput production of double emulsions.
    Eggersdorfer ML; Zheng W; Nawar S; Mercandetti C; Ofner A; Leibacher I; Koehler S; Weitz DA
    Lab Chip; 2017 Feb; 17(5):936-942. PubMed ID: 28197593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformal Hydrogel-Skin Coating on a Microfluidic Channel through Microstamping Transfer of the Masking Layer.
    Lee W; Lim J; Kim J
    Anal Chem; 2023 May; 95(21):8332-8339. PubMed ID: 37198732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.