These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24753734)

  • 1. Spatially variant red blood cell crenation in alternating current non-uniform fields.
    An R; Wipf DO; Minerick AR
    Biomicrofluidics; 2014 Mar; 8(2):021803. PubMed ID: 24753734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency.
    An R; Massa K; Wipf DO; Minerick AR
    Biomicrofluidics; 2014 Nov; 8(6):064126. PubMed ID: 25553200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH Gradients in Spatially Non-Uniform AC Electric Fields around the Charging Frequency; A Study of Two Different Geometries and Electrode Passivation.
    Tahmasebi A; Habibi S; Collins JL; An R; Dehdashti E; Minerick AR
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical motion of a charged colloidal particle near an AC polarized electrode with a nonuniform potential distribution: theory and experimental evidence.
    Fagan JA; Sides PJ; Prieve DC
    Langmuir; 2004 Jun; 20(12):4823-34. PubMed ID: 15984238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pH changes of stock normal saline solution on 5 percent red cell suspension.
    Martin GL; Caraan PJ; Chua JJ; Crescini JA; Diokno JM; Javier CB; Reyes KB; Soliven RY
    Immunohematology; 2014; 30(3):126-34. PubMed ID: 25695439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Red Blood Cell Movement in Whole Blood Exposed to DC and ELF Electric Fields.
    Kanemaki M; Shimizu HO; Inujima H; Miyake T; Shimizu K
    Bioelectromagnetics; 2022 Apr; 43(3):149-159. PubMed ID: 35315542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-uniform spatial distributions of both the magnitude and phase of AC electric fields determine dielectrophoretic forces.
    Wang XB; Hughes MP; Huang Y; Becker FF; Gascoyne PR
    Biochim Biophys Acta; 1995 Feb; 1243(2):185-94. PubMed ID: 7873562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation and characterization of red blood cells with alternating current fields in microdevices.
    Minerick AR; Zhou R; Takhistov P; Chang HC
    Electrophoresis; 2003 Nov; 24(21):3703-17. PubMed ID: 14613196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells.
    Adams TN; Leonard KM; Minerick AR
    Biomicrofluidics; 2013; 7(6):64114. PubMed ID: 24396548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains.
    Moncada-Hernandez H; Nagler E; Minerick AR
    Electrophoresis; 2014 Jul; 35(12-13):1803-13. PubMed ID: 24658965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction-Free Concentration Gradient Generation in Spatially Nonuniform AC Electric Fields.
    An R; Minerick AR
    Langmuir; 2022 May; 38(19):5977-5986. PubMed ID: 35507010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating single annealed polyelectrolyte under alternating current electric fields: Collapse versus accumulation.
    Wang S; Zhu Y
    Biomicrofluidics; 2012 Jun; 6(2):24116-2411612. PubMed ID: 22655024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid Crystals-Enabled AC Electrokinetics.
    Peng C; Lavrentovich OD
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30634568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectrophoresis and deformation of a liquid drop in a non-uniform, axisymmetric AC electric field.
    Thaokar RM
    Eur Phys J E Soft Matter; 2012 Aug; 35(8):76. PubMed ID: 22898938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip micromanipulation and assembly of colloidal particles by electric fields.
    Velev OD; Bhatt KH
    Soft Matter; 2006 Aug; 2(9):738-750. PubMed ID: 32680214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.
    Saucedo-Espinosa MA; Rauch MM; LaLonde A; Lapizco-Encinas BH
    Electrophoresis; 2016 Feb; 37(4):635-44. PubMed ID: 26531799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications.
    Lee M; Won JB; Jung DH; Kim J; Choi Y; Akyildiz K; Choi J; Kim K; Cho J; Yoon H; Koo HJ
    Biotechnol J; 2020 Dec; 15(12):e2000343. PubMed ID: 33067912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Study of Particle-Fluid Flow Under AC Electrokinetics in Electrode-Multilayered Microfluidic Device.
    Sato N; Yao J; Sugawara M; Takei M
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):453-463. PubMed ID: 29993454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule alignment and manipulation using AC electrokinetics.
    Uppalapati M; Huang YM; Jackson TN; Hancock WO
    Small; 2008 Sep; 4(9):1371-81. PubMed ID: 18720434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.