These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 24754339)

  • 21. Incorporating clade identity in analyses of phylogenetic community structure: an example with hummingbirds.
    Parra J; McGuire JA; Graham C
    Am Nat; 2010 Nov; 176(5):573-87. PubMed ID: 20849270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios.
    Barbet-Massin M; Jetz W
    Glob Chang Biol; 2015 Aug; 21(8):2917-28. PubMed ID: 25931153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Species interactions mediate phylogenetic community structure in a hyperdiverse lizard assemblage from arid Australia.
    Rabosky DL; Cowan MA; Talaba AL; Lovette IJ
    Am Nat; 2011 Nov; 178(5):579-95. PubMed ID: 22030728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are species' responses to global change predicted by past niche evolution?
    Lavergne S; Evans ME; Burfield IJ; Jiguet F; Thuiller W
    Philos Trans R Soc Lond B Biol Sci; 2013 Jan; 368(1610):20120091. PubMed ID: 23209172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The phylogenetic structure of a neotropical forest tree community.
    Kembel SW; Hubbell SP
    Ecology; 2006 Jul; 87(7 Suppl):S86-99. PubMed ID: 16922305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dietary guild composition and disaggregation of avian assemblages under climate change.
    Ko CY; Schmitz OJ; Barbet-Massin M; Jetz W
    Glob Chang Biol; 2014 Mar; 20(3):790-802. PubMed ID: 24123557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying species contributions to ecosystem processes: a global assessment of functional trait and phylogenetic metrics across avian seed-dispersal networks.
    Pigot AL; Bregman T; Sheard C; Daly B; Etienne RS; Tobias JA
    Proc Biol Sci; 2016 Dec; 283(1844):. PubMed ID: 27928035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species.
    Losos JB
    Ecol Lett; 2008 Oct; 11(10):995-1003. PubMed ID: 18673385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Species are not most abundant in the centre of their geographic range or climatic niche.
    Dallas T; Decker RR; Hastings A
    Ecol Lett; 2017 Dec; 20(12):1526-1533. PubMed ID: 29027344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment.
    Rangel TF; Diniz-Filho JA; Colwell RK
    Am Nat; 2007 Oct; 170(4):602-16. PubMed ID: 17891738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial Autocorrelation Can Generate Stronger Correlations between Range Size and Climatic Niches Than the Biological Signal - A Demonstration Using Bird and Mammal Range Maps.
    Boucher-Lalonde V; Currie DJ
    PLoS One; 2016; 11(11):e0166243. PubMed ID: 27855201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate, niche conservatism, and the global bird diversity gradient.
    Hawkins BA; Diniz-Filho JA; Jaramillo CA; Soeller SA
    Am Nat; 2007 Aug; 170 Suppl 2():S16-27. PubMed ID: 17874382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Meta-networks for the study of biogeographical traits in ecological networks: the Mexican hummingbird-plant assemblage.
    Martín González AM; Ornelas JF; Dalsgaard B; Márquez-Luna U; Lara C
    Naturwissenschaften; 2018 Aug; 105(9-10):54. PubMed ID: 30291455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does niche conservatism promote speciation? A case study in North American salamanders.
    Kozak KH; Wiens JJ
    Evolution; 2006 Dec; 60(12):2604-21. PubMed ID: 17263120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determinants of northerly range limits along the Himalayan bird diversity gradient.
    Price TD; Mohan D; Tietze DT; Hooper DM; Orme CD; Rasmussen PC
    Am Nat; 2011 Oct; 178 Suppl 1():S97-108. PubMed ID: 21956095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients.
    Belmaker J; Jetz W
    Ecol Lett; 2015 Jun; 18(6):563-71. PubMed ID: 25919478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The latitudinal gradient in dispersal constraints: ecological specialisation drives diversification in tropical birds.
    Salisbury CL; Seddon N; Cooney CR; Tobias JA
    Ecol Lett; 2012 Aug; 15(8):847-55. PubMed ID: 22639858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geographic variations in eco-evolutionary factors governing urban birds: The case of university campuses in China.
    Zhong Y; Luo Y; Zhu Y; Deng J; Tu J; Yu J; He J
    J Anim Ecol; 2024 Feb; 93(2):208-220. PubMed ID: 38098103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution.
    Warren DL; Glor RE; Turelli M
    Evolution; 2008 Nov; 62(11):2868-83. PubMed ID: 18752605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.