These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 24754390)
1. Effects of elevated carbon dioxide (CO2) concentrations on early developmental stages of the marine copepod Calanus finmarchicus Gunnerus (Copepoda: Calanoidae). Pedersen SA; Våge VT; Olsen AJ; Hammer KM; Altin D J Toxicol Environ Health A; 2014; 77(9-11):535-49. PubMed ID: 24754390 [TBL] [Abstract][Full Text] [Related]
2. Have we been underestimating the effects of ocean acidification in zooplankton? Cripps G; Lindeque P; Flynn KJ Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283 [TBL] [Abstract][Full Text] [Related]
3. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Pedersen SA; Håkedal OJ; Salaberria I; Tagliati A; Gustavson LM; Jenssen BM; Olsen AJ; Altin D Environ Sci Technol; 2014 Oct; 48(20):12275-84. PubMed ID: 25225957 [TBL] [Abstract][Full Text] [Related]
4. Effects of elevated CO2 on the reproduction of two calanoid copepods. McConville K; Halsband C; Fileman ES; Somerfield PJ; Findlay HS; Spicer JI Mar Pollut Bull; 2013 Aug; 73(2):428-34. PubMed ID: 23490345 [TBL] [Abstract][Full Text] [Related]
5. Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Kurihara H; Ishimatsu A Mar Pollut Bull; 2008 Jun; 56(6):1086-90. PubMed ID: 18455195 [TBL] [Abstract][Full Text] [Related]
6. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation. McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509 [TBL] [Abstract][Full Text] [Related]
7. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria. Dickinson GH; Matoo OB; Tourek RT; Sokolova IM; Beniash E J Exp Biol; 2013 Jul; 216(Pt 14):2607-18. PubMed ID: 23531824 [TBL] [Abstract][Full Text] [Related]
8. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. Carter HA; Ceballos-Osuna L; Miller NA; Stillman JH J Exp Biol; 2013 Apr; 216(Pt 8):1412-22. PubMed ID: 23536589 [TBL] [Abstract][Full Text] [Related]
9. Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica. Kita J; Kikkawa T; Asai T; Ishimatsu A Mar Pollut Bull; 2013 Aug; 73(2):402-8. PubMed ID: 23820193 [TBL] [Abstract][Full Text] [Related]
10. Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods. Grenvald JC; Nielsen TG; Hjorth M Ecotoxicology; 2013 Jan; 22(1):184-98. PubMed ID: 23143803 [TBL] [Abstract][Full Text] [Related]
11. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus. Weydmann A; Walczowski W; Carstensen J; Kwaśniewski S Glob Chang Biol; 2018 Jan; 24(1):172-183. PubMed ID: 28801968 [TBL] [Abstract][Full Text] [Related]
12. A marine secondary producer respires and feeds more in a high CO2 ocean. Li W; Gao K Mar Pollut Bull; 2012 Apr; 64(4):699-703. PubMed ID: 22364924 [TBL] [Abstract][Full Text] [Related]
13. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Thor P; Dupont S Glob Chang Biol; 2015 Jun; 21(6):2261-71. PubMed ID: 25430823 [TBL] [Abstract][Full Text] [Related]
14. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Kurihara H; Shimode S; Shirayama Y Mar Pollut Bull; 2004 Nov; 49(9-10):721-7. PubMed ID: 15530515 [TBL] [Abstract][Full Text] [Related]
15. Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on Calanus finmarchicus and Calanus glacialis (Crustacea: Copepoda). Hansen BH; Altin D; Rørvik SF; Øverjordet IB; Olsen AJ; Nordtug T Sci Total Environ; 2011 Jan; 409(4):704-9. PubMed ID: 21130489 [TBL] [Abstract][Full Text] [Related]
17. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction. Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897 [TBL] [Abstract][Full Text] [Related]
18. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content. Garzke J; Hansen T; Ismar SM; Sommer U PLoS One; 2016; 11(5):e0155952. PubMed ID: 27224476 [TBL] [Abstract][Full Text] [Related]
19. Effects of dispersed oil on reproduction in the cold water copepod Calanus finmarchicus (Gunnerus). Olsen AJ; Nordtug T; Altin D; Lervik M; Hansen BH Environ Toxicol Chem; 2013 Sep; 32(9):2045-55. PubMed ID: 23661343 [TBL] [Abstract][Full Text] [Related]
20. Modelling produced water dispersion and its direct toxic effects on the production and biomass of the marine copepod Calanus finmarchicus. Broch OJ; Slagstad D; Smit M Mar Environ Res; 2013 Mar; 84():84-95. PubMed ID: 23306020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]