These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 24754390)

  • 21. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Individual and molecular level effects of produced water contaminants on nauplii and adult females of Calanus finmarchicus.
    Jensen LK; Halvorsen E; Song Y; Hallanger IG; Hansen EL; Brooks SJ; Hansen BH; Tollefsen KE
    J Toxicol Environ Health A; 2016; 79(13-15):585-601. PubMed ID: 27484140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detrimental effect of CO2-driven seawater acidification on a crustacean brine shrimp, Artemia sinica.
    Zheng CQ; Jeswin J; Shen KL; Lablche M; Wang KJ; Liu HP
    Fish Shellfish Immunol; 2015 Mar; 43(1):181-90. PubMed ID: 25555807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate, copepods and seabirds in the boreal Northeast Atlantic - current state and future outlook.
    Frederiksen M; Anker-Nilssen T; Beaugrand G; Wanless S
    Glob Chang Biol; 2013 Feb; 19(2):364-72. PubMed ID: 23504776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding.
    Chan KY; Grünbaum D; O'Donnell MJ
    J Exp Biol; 2011 Nov; 214(Pt 22):3857-67. PubMed ID: 22031751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultraviolet (280-400 nm)-induced DNA damage in the eggs and larvae of Calanus finmarchicus G. (Copepoda) and Atlantic cod (Gadus morhua).
    Browman HI; Vetter RD; Rodriguez CA; Cullen JJ; Davis RF; Lynn E; St Pierre JF
    Photochem Photobiol; 2003 Apr; 77(4):397-404. PubMed ID: 12737142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards quantitative ecological risk assessment of elevated carbon dioxide levels in the marine environment.
    de Vries P; Tamis JE; Foekema EM; Klok C; Murk AJ
    Mar Pollut Bull; 2013 Aug; 73(2):516-23. PubMed ID: 23850125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical responses of the copepod Centropages tenuiremis to CO(2)-driven acidified seawater.
    Zhang D; Li S; Wang G; Guo D; Xing K; Zhang S
    Water Sci Technol; 2012; 65(1):30-7. PubMed ID: 22173405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Habitat traits and food availability determine the response of marine invertebrates to ocean acidification.
    Pansch C; Schaub I; Havenhand J; Wahl M
    Glob Chang Biol; 2014 Mar; 20(3):765-77. PubMed ID: 24273082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular effects of diethanolamine exposure on Calanus finmarchicus (Crustacea: Copepoda).
    Hansen BH; Altin D; Booth A; Vang SH; Frenzel M; Sørheim KR; Brakstad OG; Størseth TR
    Aquat Toxicol; 2010 Aug; 99(2):212-22. PubMed ID: 20537412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of increased
    Oh JH; Kim D; Kim TW; Kang T; Yu OH; Lee W
    Anim Cells Syst (Seoul); 2017; 21(3):217-222. PubMed ID: 30460072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis.
    Hu MY; Casties I; Stumpp M; Ortega-Martinez O; Dupont S
    J Exp Biol; 2014 Jul; 217(Pt 13):2411-21. PubMed ID: 24737772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential acidification impacts on zooplankton in CCS leakage scenarios.
    Halsband C; Kurihara H
    Mar Pollut Bull; 2013 Aug; 73(2):495-503. PubMed ID: 23632089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stage-dependent and sex-dependent sensitivity to water-soluble fractions of fresh and weathered oil in the marine copepod Calanus finmarchicus.
    Jager T; Altin D; Miljeteig C; Hansen BH
    Environ Toxicol Chem; 2016 Mar; 35(3):728-35. PubMed ID: 26923858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional impacts of ocean acidification in an ecologically critical foundation species.
    Gaylord B; Hill TM; Sanford E; Lenz EA; Jacobs LA; Sato KN; Russell AD; Hettinger A
    J Exp Biol; 2011 Aug; 214(Pt 15):2586-94. PubMed ID: 21753053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ocean Acidification Affects the Phyto-Zoo Plankton Trophic Transfer Efficiency.
    Cripps G; Flynn KJ; Lindeque PK
    PLoS One; 2016; 11(4):e0151739. PubMed ID: 27082737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages.
    Kikkawa T; Kita J; Ishimatsu A
    Mar Pollut Bull; 2004 Jan; 48(1-2):108-10. PubMed ID: 14725881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative stress and antioxidant defence responses in two marine copepods in a high CO
    Engström-Öst J; Kanerva M; Vuori K; Riebesell U; Spisla C; Glippa O
    Sci Total Environ; 2020 Nov; 745():140600. PubMed ID: 32717595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.
    Lee C; Hong S; Kwon BO; Lee JH; Ryu J; Park YG; Kang SG; Khim JS
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14945-56. PubMed ID: 27074931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Field-based experimental acidification alters fouling community structure and reduces diversity.
    Brown NE; Therriault TW; Harley CD
    J Anim Ecol; 2016 Sep; 85(5):1328-39. PubMed ID: 27286309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.