These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24754456)

  • 1. Direct β-alkylation of aldehydes via photoredox organocatalysis.
    Terrett JA; Clift MD; MacMillan DW
    J Am Chem Soc; 2014 May; 136(19):6858-61. PubMed ID: 24754456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective α-Alkylation of Aldehydes by Photoredox Organocatalysis: Rapid Access to Pharmacophore Fragments from β-Cyanoaldehydes.
    Welin ER; Warkentin AA; Conrad JC; MacMillan DW
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9668-72. PubMed ID: 26130043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct β-functionalization of cyclic ketones with aryl ketones via the merger of photoredox and organocatalysis.
    Petronijević FR; Nappi M; MacMillan DW
    J Am Chem Soc; 2013 Dec; 135(49):18323-6. PubMed ID: 24237366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoredox activation for the direct β-arylation of ketones and aldehydes.
    Pirnot MT; Rankic DA; Martin DB; MacMillan DW
    Science; 2013 Mar; 339(6127):1593-6. PubMed ID: 23539600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Aldehyde C-H Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom Transfer, and Photoredox Catalysis.
    Zhang X; MacMillan DWC
    J Am Chem Soc; 2017 Aug; 139(33):11353-11356. PubMed ID: 28780856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes.
    Nicewicz DA; MacMillan DW
    Science; 2008 Oct; 322(5898):77-80. PubMed ID: 18772399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Radical-Radical Cross-Couplings: Design of a Formal β-Mannich Reaction.
    Jeffrey JL; Petronijević FR; MacMillan DW
    J Am Chem Soc; 2015 Jul; 137(26):8404-7. PubMed ID: 26075347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential asymmetric catalysis in Michael-Michael-Michael-aldol reactions: merging organocatalysis with photoredox catalysis in a one-pot enantioselective synthesis of highly functionalized decalines bearing a quaternary carbon stereocenter.
    Hong BC; Lin CW; Liao WK; Lee GH
    Org Lett; 2013 Dec; 15(24):6258-61. PubMed ID: 24266326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective alpha-trifluoromethylation of aldehydes via photoredox organocatalysis.
    Nagib DA; Scott ME; MacMillan DW
    J Am Chem Soc; 2009 Aug; 131(31):10875-7. PubMed ID: 19722670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prebiotically Plausible Organocatalysts Enabling a Selective Photoredox α-Alkylation of Aldehydes on the Early Earth.
    Closs AC; Fuks E; Bechtel M; Trapp O
    Chemistry; 2020 Aug; 26(47):10702-10706. PubMed ID: 32233051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ketones from aldehydes via alkyl C(sp
    Wang HY; Wang XH; Zhou BA; Zhang CL; Ye S
    Nat Commun; 2023 Jul; 14(1):4044. PubMed ID: 37422483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoredox-catalyzed Direct Reductive Amination of Aldehydes without an External Hydrogen/Hydride Source.
    Alam R; Molander GA
    Org Lett; 2018 May; 20(9):2680-2684. PubMed ID: 29652160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective aldehyde alpha-nitroalkylation via oxidative organocatalysis.
    Wilson JE; Casarez AD; MacMillan DW
    J Am Chem Soc; 2009 Aug; 131(32):11332-4. PubMed ID: 19627154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-neutral α-C-H bond functionalization of secondary amines with concurrent C-P bond formation/N-alkylation.
    Das D; Seidel D
    Org Lett; 2013 Sep; 15(17):4358-61. PubMed ID: 23957378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of C-H bonds via the merger of photoredox and organocatalysis: a coupling of benzylic ethers with Schiff bases.
    Hager D; MacMillan DW
    J Am Chem Soc; 2014 Dec; 136(49):16986-9. PubMed ID: 25457231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols.
    Nacsa ED; MacMillan DWC
    J Am Chem Soc; 2018 Mar; 140(9):3322-3330. PubMed ID: 29400958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective reduction of carboxylic acids to aldehydes with hydrosilane via photoredox catalysis.
    Zhang M; Li N; Tao X; Ruzi R; Yu S; Zhu C
    Chem Commun (Camb); 2017 Sep; 53(73):10228-10231. PubMed ID: 28861564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct β-activation of saturated aldehydes to formal Michael acceptors through oxidative NHC catalysis.
    Mo J; Shen L; Chi YR
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8588-91. PubMed ID: 23766245
    [No Abstract]   [Full Text] [Related]  

  • 20. Enantioselective organocatalysis using SOMO activation.
    Beeson TD; Mastracchio A; Hong JB; Ashton K; Macmillan DW
    Science; 2007 Apr; 316(5824):582-5. PubMed ID: 17395791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.