These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24754456)

  • 21. Photoredox-Catalyzed Multicomponent Petasis Reaction with Alkyltrifluoroborates.
    Yi J; Badir SO; Alam R; Molander GA
    Org Lett; 2019 Jun; 21(12):4853-4858. PubMed ID: 31145628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The versatile roles of ammonium salt catalysts in enantioselective reduction and alkylation of α,β-unsaturated aldehydes: iminium catalysis, enamine catalysis and acid catalysis.
    Xiang SK; Zhang B; Zhang LH; Cui Y; Jiao N
    Chem Commun (Camb); 2011 May; 47(17):5007-9. PubMed ID: 21424018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using aldehydes.
    Byun E; Hong B; De Castro KA; Lim M; Rhee H
    J Org Chem; 2007 Dec; 72(25):9815-7. PubMed ID: 17997570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Room temperature intramolecular hydro-O-alkylation of aldehydes: sp3 C-H functionalization via a Lewis acid catalyzed tandem 1,5-hydride transfer/cyclization.
    Pastine SJ; Sames D
    Org Lett; 2005 Nov; 7(24):5429-31. PubMed ID: 16288523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis.
    Beatty JW; Stephenson CR
    Acc Chem Res; 2015 May; 48(5):1474-84. PubMed ID: 25951291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radical alkylation of isocyanides with amino acid-/peptide-derived Katritzky salts via photoredox catalysis.
    Zhu ZF; Zhang MM; Liu F
    Org Biomol Chem; 2019 Feb; 17(6):1531-1534. PubMed ID: 30681112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-Coupling of Alkyl Redox-Active Esters with Benzophenone Imines: Tandem Photoredox and Copper Catalysis.
    Mao R; Balon J; Hu X
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9501-9504. PubMed ID: 29863760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-free carbonylations by photoredox catalysis.
    Majek M; Jacobi von Wangelin A
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2270-4. PubMed ID: 25414135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct, enantioselective α-alkylation of aldehydes using simple olefins.
    Capacci AG; Malinowski JT; McAlpine NJ; Kuhne J; MacMillan DWC
    Nat Chem; 2017 Nov; 9(11):1073-1077. PubMed ID: 29064486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alkyl Radical Addition to Aliphatic and Aromatic
    Cullen STJ; Friestad GK
    Org Lett; 2019 Oct; 21(20):8290-8294. PubMed ID: 31560554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA-encoded CH functionality via photoredox-mediated hydrogen atom transformation catalysis.
    Shan J; Ling X; Liu J; Wang X; Lu X
    Bioorg Med Chem; 2021 Jul; 42():116234. PubMed ID: 34098191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.
    Porta R; Benaglia M; Puglisi A; Mandoli A; Gualandi A; Cozzi PG
    ChemSusChem; 2014 Dec; 7(12):3534-40. PubMed ID: 25336345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palladium and organocatalysis: an excellent recipe for asymmetric synthesis.
    Fernández-Ibañez MA; Maciá B; Alonso DA; Pastor IM
    Molecules; 2013 Aug; 18(9):10108-21. PubMed ID: 23973988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Merging organocatalysis with transition metal catalysis and using O2 as the oxidant for enantioselective C-H functionalization of aldehydes.
    Zhao YL; Wang Y; Hu XQ; Xu PF
    Chem Commun (Camb); 2013 Sep; 49(68):7555-7. PubMed ID: 23872670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Merging organocatalysis with transition metal catalysis: highly stereoselective α-alkylation of aldehydes.
    Xiao J
    Org Lett; 2012 Apr; 14(7):1716-9. PubMed ID: 22436110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantioselective α-benzylation of aldehydes via photoredox organocatalysis.
    Shih HW; Vander Wal MN; Grange RL; MacMillan DW
    J Am Chem Soc; 2010 Oct; 132(39):13600-3. PubMed ID: 20831195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes.
    Zhou ZZ; Song XR; Du S; Xia KJ; Tian WF; Xiao Q; Liang YM
    Chem Commun (Camb); 2021 Sep; 57(74):9390-9393. PubMed ID: 34528958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organocatalytic enantioselective Friedel-Crafts alkylation of 4,7-dihydroindoles with alpha,beta-unsaturated aldehydes: an easy access to 2-substituted indoles.
    Hong L; Liu C; Sun W; Wang L; Wong K; Wang R
    Org Lett; 2009 May; 11(10):2177-80. PubMed ID: 19385607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Ugi Reaction Incorporating a Redox-Neutral Amine C-H Functionalization Step.
    Zhu Z; Seidel D
    Org Lett; 2016 Feb; 18(4):631-3. PubMed ID: 26785064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enantioselective organocatalytic intramolecular ring-closing Friedel-Crafts-type alkylation of indoles.
    Li CF; Liu H; Liao J; Cao YJ; Liu XP; Xiao WJ
    Org Lett; 2007 May; 9(10):1847-50. PubMed ID: 17428060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.