These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24754608)

  • 41. Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances.
    Pourrahimi AM; Pumera M
    Nanoscale; 2018 Sep; 10(35):16398-16415. PubMed ID: 30178795
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors.
    Naeem S; Mujtaba J; Naeem F; Xu K; Huang G; Solovev AA; Zhang J; Mei Y
    RSC Adv; 2020 Oct; 10(60):36526-36530. PubMed ID: 35517949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion.
    Wang H; Moo JG; Pumera M
    ACS Nano; 2016 May; 10(5):5041-50. PubMed ID: 27135613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analyte Sensing with Catalytic Micromotors.
    Popescu MN; Gáspár S
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671880
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photochromic Spatiotemporal Control of Bubble-Propelled Micromotors by a Spiropyran Molecular Switch.
    Moo JG; Presolski S; Pumera M
    ACS Nano; 2016 Mar; 10(3):3543-52. PubMed ID: 26919161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiwavelength Light-Responsive Au/B-TiO
    Jang B; Hong A; Kang HE; Alcantara C; Charreyron S; Mushtaq F; Pellicer E; Büchel R; Sort J; Lee SS; Nelson BJ; Pané S
    ACS Nano; 2017 Jun; 11(6):6146-6154. PubMed ID: 28590716
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reversible Speed Regulation of Self-Propelled Janus Micromotors via Thermoresponsive Bottle-Brush Polymers.
    Fiedler C; Ulbricht C; Truglas T; Wielend D; Bednorz M; Groiss H; Brüggemann O; Teasdale I; Salinas Y
    Chemistry; 2021 Feb; 27(10):3262-3267. PubMed ID: 33205559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tissue cell assisted fabrication of tubular catalytic platinum microengines.
    Wang H; Moo JG; Pumera M
    Nanoscale; 2014 Oct; 6(19):11359-63. PubMed ID: 25143056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View.
    Liu L; Bai T; Chi Q; Wang Z; Xu S; Liu Q; Wang Q
    Micromachines (Basel); 2017 Aug; 8(9):. PubMed ID: 30400455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.
    Wu Y; Si T; Lin X; He Q
    Chem Commun (Camb); 2015 Jan; 51(3):511-4. PubMed ID: 25409875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Visible Light Actuated Efficient Exclusion Between Plasmonic Ag/AgCl Micromotors and Passive Beads.
    Wang X; Baraban L; Misko VR; Nori F; Huang T; Cuniberti G; Fassbender J; Makarov D
    Small; 2018 Nov; 14(44):e1802537. PubMed ID: 30238700
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-propelled two dimensional polymer multilayer plate micromotors.
    Gai M; Frueh J; Hu N; Si T; Sukhorukov GB; He Q
    Phys Chem Chem Phys; 2016 Feb; 18(5):3397-401. PubMed ID: 26780851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vapor-Driven Propulsion of Catalytic Micromotors.
    Dong R; Li J; Rozen I; Ezhilan B; Xu T; Christianson C; Gao W; Saintillan D; Ren B; Wang J
    Sci Rep; 2015 Aug; 5():13226. PubMed ID: 26285032
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of real-world environments on the motion of catalytic bubble-propelled micromotors.
    Zhao G; Wang H; Khezri B; Webster RD; Pumera M
    Lab Chip; 2013 Aug; 13(15):2937-41. PubMed ID: 23743873
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multi-Light-Responsive Quantum Dot Sensitized Hybrid Micromotors with Dual-Mode Propulsion.
    María Hormigos R; Jurado Sánchez B; Escarpa A
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3128-3132. PubMed ID: 30521672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mg-Based Micromotors with Motion Responsive to Dual Stimuli.
    Xiong K; Xu L; Lin J; Mou F; Guan J
    Research (Wash D C); 2020; 2020():6213981. PubMed ID: 32832907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient bubble propulsion of polymer-based microengines in real-life environments.
    Gao W; Sattayasamitsathit S; Orozco J; Wang J
    Nanoscale; 2013 Oct; 5(19):8909-14. PubMed ID: 23942761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Viscosity-Based Model for Bubble-Propelled Catalytic Micromotors.
    Wang Z; Chi Q; Liu L; Liu Q; Bai T; Wang Q
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Internally/Externally Bubble-Propelled Photocatalytic Tubular Nanomotors for Efficient Water Cleaning.
    Wang S; Jiang Z; Ouyang S; Dai Z; Wang T
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23974-23982. PubMed ID: 28650608
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bubble driven quasioscillatory translational motion of catalytic micromotors.
    Manjare M; Yang B; Zhao YP
    Phys Rev Lett; 2012 Sep; 109(12):128305. PubMed ID: 23005998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.