BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24754868)

  • 1. Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds.
    Castaño O; Sachot N; Xuriguera E; Engel E; Planell JA; Park JH; Jin GZ; Kim TH; Kim JH; Kim HW
    ACS Appl Mater Interfaces; 2014 May; 6(10):7512-22. PubMed ID: 24754868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proangiogenic potential of a novel calcium releasing composite biomaterial: Orthotopic in vivo evaluation.
    Oliveira H; Catros S; Castano O; Rey S; Siadous R; Clift D; Marti-Munoz J; Batista M; Bareille R; Planell J; Engel E; Amédée J
    Acta Biomater; 2017 May; 54():377-385. PubMed ID: 28242456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-degrading PLA/ORMOGLASS fibrous composite scaffold leads to a calcium-rich angiogenic environment.
    Sachot N; Roguska A; Planell JA; Lewandowska M; Engel E; Castaño O
    Int J Nanomedicine; 2017; 12():4901-4919. PubMed ID: 28744124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts.
    Murphy S; Boyd D; Moane S; Bennett M
    J Mater Sci Mater Med; 2009 Nov; 20(11):2207-14. PubMed ID: 19475338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment.
    Oliveira H; Catros S; Boiziau C; Siadous R; Marti-Munoz J; Bareille R; Rey S; Castano O; Planell J; Amédée J; Engel E
    Acta Biomater; 2016 Jan; 29():435-445. PubMed ID: 26441126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass--polycaprolactone composites.
    Prabhakar RL; Brocchini S; Knowles JC
    Biomaterials; 2005 May; 26(15):2209-18. PubMed ID: 15585222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of blend parameters for the fabrication of polycaprolactone-silicon based ormoglass nanofibers by electrospinning.
    Sachot N; Castano O; Planell JA; Engel E
    J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1287-93. PubMed ID: 25355602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards 4th generation biomaterials: a covalent hybrid polymer-ormoglass architecture.
    Sachot N; Mateos-Timoneda MA; Planell JA; Velders AH; Lewandowska M; Engel E; Castaño O
    Nanoscale; 2015 Oct; 7(37):15349-61. PubMed ID: 26332471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblastic differentiation under controlled bioactive ion release by silica and titania doped sodium-free calcium phosphate-based glass.
    Shah Mohammadi M; Chicatun F; Stähli C; Muja N; Bureau MN; Nazhat SN
    Colloids Surf B Biointerfaces; 2014 Sep; 121():82-91. PubMed ID: 24945606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution behavior of CaO-MgO-SiO
    Zhang M; Chen X; Pu X; Liao X; Huang Z; Yin G
    J Biomed Mater Res A; 2017 Nov; 105(11):3159-3168. PubMed ID: 28707315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites.
    Mohammadi MS; Ahmed I; Muja N; Almeida S; Rudd CD; Bureau MN; Nazhat SN
    Acta Biomater; 2012 Apr; 8(4):1616-26. PubMed ID: 22248526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation properties and ion release characteristics of Resilon and phosphate glass/polycaprolactone composites.
    Borbely P; Gulabivala K; Knowles JC
    Int Endod J; 2008 Dec; 41(12):1093-100. PubMed ID: 19133099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations.
    Shah Mohammadi M; Ahmed I; Marelli B; Rudd C; Bureau MN; Nazhat SN
    Acta Biomater; 2010 Aug; 6(8):3157-68. PubMed ID: 20206722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration.
    Zhang J; Zhao S; Zhu Y; Huang Y; Zhu M; Tao C; Zhang C
    Acta Biomater; 2014 May; 10(5):2269-81. PubMed ID: 24412143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect.
    Kim JH; Linh NT; Min YK; Lee BT
    J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of novel aligned nanofibrous composite membranes for guided bone regeneration.
    Kharaziha M; Fathi MH; Edris H
    J Mech Behav Biomed Mater; 2013 Aug; 24():9-20. PubMed ID: 23706988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Impact of Bioactive Glasses and Their Dissolution Products.
    Hoppe A; Boccaccini AR
    Front Oral Biol; 2015; 17():22-32. PubMed ID: 26201273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ionic dissolution products of Ca-Sr-Na-Zn-Si bioactive glass on in vitro cytocompatibility.
    Murphy S; Wren AW; Towler MR; Boyd D
    J Mater Sci Mater Med; 2010 Oct; 21(10):2827-34. PubMed ID: 20711638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.