BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 24755084)

  • 41. Investigating Ketone Bodies as Immunometabolic Countermeasures against Respiratory Viral Infections.
    Stubbs BJ; Koutnik AP; Goldberg EL; Upadhyay V; Turnbaugh PJ; Verdin E; Newman JC
    Med; 2020 Dec; 1(1):43-65. PubMed ID: 32838361
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gallic acid exerts anti-inflammatory, anti-oxidative stress, and nephroprotective effects against paraquat-induced renal injury in male rats.
    Nouri A; Heibati F; Heidarian E
    Naunyn Schmiedebergs Arch Pharmacol; 2021 Jan; 394(1):1-9. PubMed ID: 32734364
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gallic acid mitigates diclofenac-induced liver toxicity by modulating oxidative stress and suppressing
    Esmaeilzadeh M; Heidarian E; Shaghaghi M; Roshanmehr H; Najafi M; Moradi A; Nouri A
    Pharm Biol; 2020 Dec; 58(1):590-596. PubMed ID: 32633182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought?
    Morris G; Puri BK; Carvalho A; Maes M; Berk M; Ruusunen A; Olive L
    Int J Neuropsychopharmacol; 2020 Jun; 23(6):366-384. PubMed ID: 32034911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of p58ipk protects neuroblastoma against paraquat-induced toxicity.
    Li F; Ge B; Damirin A
    Int J Clin Exp Pathol; 2017; 10(8):8233-8242. PubMed ID: 31966674
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Therapeutic potential of
    Sharifi-Rigi A; Heidarian E
    Avicenna J Phytomed; 2019; 9(6):563-573. PubMed ID: 31763215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systemic redox status in lung cancer patients is related to altered glucose metabolism.
    Zabłocka-Słowińska K; Płaczkowska S; Prescha A; Pawełczyk K; Kosacka M; Porębska I; Grajeta H
    PLoS One; 2018; 13(9):e0204173. PubMed ID: 30235348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolomics for the early detection of cisplatin-induced nephrotoxicity.
    Ezaki T; Nishiumi S; Azuma T; Yoshida M
    Toxicol Res (Camb); 2017 Nov; 6(6):843-853. PubMed ID: 30090547
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health.
    Miller VJ; Villamena FA; Volek JS
    J Nutr Metab; 2018; 2018():5157645. PubMed ID: 29607218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Urine metabolomics insight into acute kidney injury point to oxidative stress disruptions in energy generation and H
    Martin-Lorenzo M; Gonzalez-Calero L; Ramos-Barron A; Sanchez-Niño MD; Gomez-Alamillo C; García-Segura JM; Ortiz A; Arias M; Vivanco F; Alvarez-Llamas G
    J Mol Med (Berl); 2017 Dec; 95(12):1399-1409. PubMed ID: 28975359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diabetic ketosis during hyperglycemic crisis is associated with decreased all-cause mortality in patients with type 2 diabetes mellitus.
    Kruljac I; Ćaćić M; Ćaćić P; Ostojić V; Štefanović M; Šikić A; Vrkljan M
    Endocrine; 2017 Jan; 55(1):139-143. PubMed ID: 27592119
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the Agricultural Health Study.
    Lebov JF; Engel LS; Richardson D; Hogan SL; Sandler DP; Hoppin JA
    Environ Res; 2015 Nov; 143(Pt A):198-210. PubMed ID: 26505650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury.
    Sancho-Martínez SM; López-Novoa JM; López-Hernández FJ
    Clin Kidney J; 2015 Oct; 8(5):548-59. PubMed ID: 26413280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity.
    Sahu BD; Rentam KK; Putcha UK; Kuncha M; Vegi GM; Sistla R
    Food Chem Toxicol; 2011 Dec; 49(12):3090-7. PubMed ID: 21930180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isorhynchophylline ameliorates paraquat-induced acute kidney injury by attenuating oxidative stress and mitochondrial damage via regulating toll-interacting expression.
    Zheng Q; Zhang Y; Zhao Z; Shen H; Zhao H; Zhao M
    Toxicol Appl Pharmacol; 2021 Jun; 420():115521. PubMed ID: 33838153
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Paraquat induces lung alveolar epithelial cell apoptosis via Nrf-2-regulated mitochondrial dysfunction and ER stress.
    Chen YW; Yang YT; Hung DZ; Su CC; Chen KL
    Arch Toxicol; 2012 Oct; 86(10):1547-58. PubMed ID: 22678742
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New insights into antioxidant strategies against paraquat toxicity.
    Blanco-Ayala T; Andérica-Romero AC; Pedraza-Chaverri J
    Free Radic Res; 2014 Jun; 48(6):623-40. PubMed ID: 24593876
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protective effects of natural compounds against paraquat-induced pulmonary toxicity: the role of the Nrf2/ARE signaling pathway.
    Badibostan H; Eizadi-Mood N; Hayes AW; Karimi G
    Int J Environ Health Res; 2024 Jan; 34(1):611-624. PubMed ID: 36682065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protective effects of exogenous β-hydroxybutyrate on paraquat toxicity in rat kidney.
    Wei T; Tian W; Liu F; Xie G
    Biochem Biophys Res Commun; 2014 May; 447(4):666-71. PubMed ID: 24755084
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.