These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24755116)

  • 1. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries.
    Rana K; Singh J; Lee JT; Park JH; Ahn JH
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11158-66. PubMed ID: 24755116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries.
    Rana K; Kim SD; Ahn JH
    Nanoscale; 2015 Apr; 7(16):7065-71. PubMed ID: 25587843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries.
    Xia F; Hu X; Sun Y; Luo W; Huang Y
    Nanoscale; 2012 Aug; 4(15):4707-11. PubMed ID: 22744734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-standing and flexible electrode of yolk-shell CoS2 spheres encapsulated with nitrogen-doped graphene for high-performance lithium-ion batteries.
    Qiu W; Jiao J; Xia J; Zhong H; Chen L
    Chemistry; 2015 Mar; 21(11):4359-67. PubMed ID: 25643650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries.
    Cao X; Shi Y; Shi W; Rui X; Yan Q; Kong J; Zhang H
    Small; 2013 Oct; 9(20):3433-8. PubMed ID: 23637090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
    Cui LF; Hu L; Choi JW; Cui Y
    ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology-Tuned Synthesis of NiCo2 O4 -Coated 3D Graphene Architectures Used as Binder-Free Electrodes for Lithium-Ion Batteries.
    Zhang C; Yu JS
    Chemistry; 2016 Mar; 22(13):4422-30. PubMed ID: 26918287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power Enhancement of Lithium-Ion Batteries by a Graphene Interfacial Layer.
    Song YI; An JH; Kim TY; Lee JW; Yoo YZ; Suh SJ; Kim SS
    J Nanosci Nanotechnol; 2015 Nov; 15(11):9034-8. PubMed ID: 26726638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binder-Free Anode for Next-Generation Lithium-Ion Batteries.
    Wei C; Fei H; Tian Y; An Y; Zeng G; Feng J; Qian Y
    Small; 2019 Nov; 15(46):e1903214. PubMed ID: 31583828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.
    Lee WS; Peng E; Loh TA; Huang X; Xue JM
    Nanoscale; 2016 Apr; 8(15):8042-7. PubMed ID: 27020143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries.
    Shao F; Li H; Yao L; Xu S; Li G; Li B; Zou C; Yang Z; Su Y; Hu N; Zhang Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27270-27277. PubMed ID: 34081435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible binder-free metal fibril mat-supported silicon anode for high-performance lithium-ion batteries.
    Song S; Kim SW; Lee DJ; Lee YG; Kim KM; Kim CH; Park JK; Lee YM; Cho KY
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11544-9. PubMed ID: 25020188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniquely arranged graphene-on-graphene structure as a binder-free anode for high-performance lithium-ion batteries.
    Ye M; Dong Z; Hu C; Cheng H; Shao H; Chen N; Qu L
    Small; 2014 Dec; 10(24):5035-41. PubMed ID: 25102808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nanoporous metal recuperated MnO2 anode for lithium ion batteries.
    Guo X; Han J; Zhang L; Liu P; Hirata A; Chen L; Fujita T; Chen M
    Nanoscale; 2015 Oct; 7(37):15111-6. PubMed ID: 26350685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries.
    Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS
    ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Encapsulation of Nano-Si in Redox Assembled rGO Film as Binder-Free Anode for Flexible/Bendable Lithium-Ion Batteries.
    Cai X; Liu W; Zhao Z; Li S; Yang S; Zhang S; Gao Q; Yu X; Wang H; Fang Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3897-3908. PubMed ID: 30628439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Graphene Modified Cu Current Collector on the Performance of Li
    Jiang J; Nie P; Ding B; Wu W; Chang Z; Wu Y; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30926-30932. PubMed ID: 27734672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries.
    Zhang F; Cao H; Yue D; Zhang J; Qu M
    Inorg Chem; 2012 Sep; 51(17):9544-51. PubMed ID: 22906577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freestanding ReS
    Qi F; Li Q; Zhang W; Huang Q; Song B; Chen Y; He J
    ACS Appl Mater Interfaces; 2023 May; 15(17):21162-21170. PubMed ID: 37079857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.