These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 24755242)
1. Development and performance of a new prosthesis system using ultrasonic sensor for wrist movements: a preliminary study. Abd Razak NA; Abu Osman NA; Gholizadeh H; Ali S Biomed Eng Online; 2014 Apr; 13():49. PubMed ID: 24755242 [TBL] [Abstract][Full Text] [Related]
2. Kinematic comparison of the wrist movements that are possible with a biomechatronics wrist prosthesis and a body-powered prosthesis: a preliminary study. Abd Razak NA; Abu Osman NA; Wan Abas WA Disabil Rehabil Assist Technol; 2013 May; 8(3):255-60. PubMed ID: 22830946 [TBL] [Abstract][Full Text] [Related]
3. Satisfaction and problems experienced with wrist movements: comparison between a common body-powered prosthesis and a new biomechatronics prosthesis. Abd Razak NA; Abu Osman NA; Kamyab M; Wan Abas WA; Gholizadeh H Am J Phys Med Rehabil; 2014 May; 93(5):437-44. PubMed ID: 24429510 [TBL] [Abstract][Full Text] [Related]
4. Comparison of EEG measurement of upper limb movement in motor imagery training system. Suwannarat A; Pan-Ngum S; Israsena P Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853 [TBL] [Abstract][Full Text] [Related]
5. A passive wrist with switchable stiffness for a body-powered hydraulically actuated hand prosthesis. Montagnani F; Smit G; Controzzi M; Cipriani C; Plettenburg DH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1197-1202. PubMed ID: 28813984 [TBL] [Abstract][Full Text] [Related]
6. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis. Bennett DA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673 [TBL] [Abstract][Full Text] [Related]
7. Multimodal sensor controlled three Degree of Freedom transradial prosthesis. Ohnishi K; Morio T; Takagi T; Kajitani I IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650467. PubMed ID: 24187284 [TBL] [Abstract][Full Text] [Related]
8. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study. Masia L; Casadio M; Giannoni P; Sandini G; Morasso P J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873 [TBL] [Abstract][Full Text] [Related]
9. Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses? Montagnani F; Controzzi M; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):600-9. PubMed ID: 25675462 [TBL] [Abstract][Full Text] [Related]
10. A modular low-clearance wrist orthosis for improving wrist motion in children with cerebral palsy. Holley D; Johnson M; Harris G; Beardsley S Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3069-72. PubMed ID: 25570639 [TBL] [Abstract][Full Text] [Related]
11. Comparison of range-of-motion and variability in upper body movements between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks. Major MJ; Stine RL; Heckathorne CW; Fatone S; Gard SA J Neuroeng Rehabil; 2014 Sep; 11():132. PubMed ID: 25192744 [TBL] [Abstract][Full Text] [Related]
12. Validation of the Leap Motion Controller using markered motion capture technology. Smeragliuolo AH; Hill NJ; Disla L; Putrino D J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160 [TBL] [Abstract][Full Text] [Related]
13. Development of the Biomech-Wrist: A 3-DOF Exoskeleton for Rehabilitation and Training of Human Wrist. Garcia-Leal R; Cruz-Ortiz D; Ballesteros M; Huegel JC IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941273 [TBL] [Abstract][Full Text] [Related]
14. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements. Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272 [TBL] [Abstract][Full Text] [Related]
15. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. Allington J; Spencer SJ; Klein J; Buell M; Reinkensmeyer DJ; Bobrow J Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1579-82. PubMed ID: 22254624 [TBL] [Abstract][Full Text] [Related]
16. Interlimb differences in coordination of rapid wrist/forearm movements. Srinivasan GA; Embar T; Sainburg R Exp Brain Res; 2020 Mar; 238(3):713-725. PubMed ID: 32060564 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of transradial body-powered prostheses using a robotic simulator. Ayub R; Villarreal D; Gregg RD; Gao F Prosthet Orthot Int; 2017 Apr; 41(2):194-200. PubMed ID: 27469105 [TBL] [Abstract][Full Text] [Related]
18. Marker placement to describe the wrist movements during activities of daily living in cyclical tasks. Murgia A; Kyberd PJ; Chappell PH; Light CM Clin Biomech (Bristol); 2004 Mar; 19(3):248-54. PubMed ID: 15003339 [TBL] [Abstract][Full Text] [Related]
19. Coordination of arm and wrist motion during a reaching task. Lacquaniti F; Soechting JF J Neurosci; 1982 Apr; 2(4):399-408. PubMed ID: 7069463 [TBL] [Abstract][Full Text] [Related]
20. Improving bimanual interaction with a prosthesis using semi-autonomous control. Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]