These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24755521)

  • 21. Development of a wavelength-separated type scintillator with optical fiber (SOF) dosimeter to compensate for the Cerenkov radiation effect.
    Ishikawa M; Nagase N; Matsuura T; Hiratsuka J; Suzuki R; Miyamoto N; Sutherland KL; Fujita K; Shirato H
    J Radiat Res; 2015 Mar; 56(2):372-81. PubMed ID: 25618136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides.
    Darafsheh A; Melzer JE; Harrington JA; Kassaee A; Finlay JC
    J Biomed Opt; 2018 Jan; 23(1):1-7. PubMed ID: 29341541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of spectral and intensity changes with measurement geometry in various light guides used in scintillation dosimetry.
    Simiele EA; DeWerd LA
    Med Phys; 2018 Jul; 45(7):3417-3428. PubMed ID: 29797512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the nature of the light produced within PMMA optical light guides in scintillation fiber-optic dosimetry.
    Therriault-Proulx F; Beaulieu L; Archambault L; Beddar S
    Phys Med Biol; 2013 Apr; 58(7):2073-84. PubMed ID: 23470253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Projection imaging of photon beams by the Čerenkov effect.
    Glaser AK; Davis SC; McClatchy DM; Zhang R; Pogue BW; Gladstone DJ
    Med Phys; 2013 Jan; 40(1):012101. PubMed ID: 23298103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo modeling of the influence of strong magnetic fields on the stem-effect in plastic scintillation detectors used in radiotherapy dosimetry.
    Simiele E; Viscariello N; DeWerd L
    Med Phys; 2021 Mar; 48(3):1381-1394. PubMed ID: 33283279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a Cerenkov radiation sensor to detect low-energy beta-particles.
    Yoo WJ; Han KT; Shin SH; Seo JK; Jeon D; Lee B
    Appl Radiat Isot; 2013 Nov; 81():196-200. PubMed ID: 23582496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Monte Carlo calculated electron slowing-down spectra generated by 60Co gamma-rays, electrons, protons and light ions.
    Tilly N; Fernández-Varea JM; Grusell E; Brahme A
    Phys Med Biol; 2002 Apr; 47(8):1303-19. PubMed ID: 12030557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.
    Eichmann M; Thomann B
    Med Phys; 2017 Sep; 44(9):4900-4909. PubMed ID: 28548280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms.
    Zhang R; Fox CJ; Glaser AK; Gladstone DJ; Pogue BW
    Phys Med Biol; 2013 Aug; 58(16):5477-93. PubMed ID: 23880473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation and correction of Cerenkov-light on luminescence image of water for carbon-ion therapy dosimetry.
    Yabe T; Akagi T; Yamamoto S
    Phys Med; 2020 Jun; 74():118-124. PubMed ID: 32464469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte Carlo modelling of radiotherapy kV x-ray units.
    Verhaegen F; Nahum AE; Van de Putte S; Namito Y
    Phys Med Biol; 1999 Jul; 44(7):1767-89. PubMed ID: 10442712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of the fractions of luminescence of water at higher energy than Cerenkov-light threshold for various types of radiation.
    Hirano Y; Yamamoto S
    J Biomed Opt; 2019 Jun; 24(6):1-9. PubMed ID: 31218874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computed Cerenkov luminescence yields for radionuclides used in biology and medicine.
    Gill RK; Mitchell GS; Cherry SR
    Phys Med Biol; 2015 Jun; 60(11):4263-80. PubMed ID: 25973972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs.
    Madden L; Archer J; Li E; Wilkinson D; Rosenfeld A
    Phys Med; 2018 Oct; 54():131-136. PubMed ID: 30337002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A systematic characterization of the low-energy photon response of plastic scintillation detectors.
    Boivin J; Beddar S; Bonde C; Schmidt D; Culberson W; Guillemette M; Beaulieu L
    Phys Med Biol; 2016 Aug; 61(15):5569-86. PubMed ID: 27384872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of Cerenkov radiation at 850 nm in higher-order-mode fiber.
    Cheng J; Lee JH; Wang K; Xu C; Jespersen KG; Garmund M; Grüner-Nielsen L; Jakobsen D
    Opt Express; 2011 Apr; 19(9):8774-80. PubMed ID: 21643129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of Cerenkov radiation in high-energy x-ray and electron beam film dosimetry using water-substitute phantoms.
    Fujisaki T; Saitoh H; Hiraoka T; Kuwabara A; Abe S; Inada T
    Phys Med Biol; 2003 Mar; 48(6):N105-9. PubMed ID: 12699198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.