BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24755554)

  • 21. The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster.
    Tombácz I; Schauer T; Juhász I; Komonyi O; Boros I
    Gene; 2009 Oct; 446(2):58-67. PubMed ID: 19632310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast.
    Zhang B; Yang G; Chen Y; Zhao Y; Gao P; Liu B; Wang H; Zheng ZL
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8197-E8206. PubMed ID: 27911772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dephosphorylation of RNA polymerase II by CTD-phosphatase FCP1 is inhibited by phospho-CTD associating proteins.
    Palancade B; Marshall NF; Tremeau-Bravard A; Bensaude O; Dahmus ME; Dubois MF
    J Mol Biol; 2004 Jan; 335(2):415-24. PubMed ID: 14672652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
    Pons T; Paramonov I; Boullosa C; Ibáñez K; Rojas AM; Valencia A
    Proteins; 2014 Jan; 82(1):103-18. PubMed ID: 23900790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation.
    Wani S; Sugita A; Ohkuma Y; Hirose Y
    J Biochem; 2016 Aug; 160(2):111-20. PubMed ID: 26920047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1.
    Kops O; Zhou XZ; Lu KP
    FEBS Lett; 2002 Feb; 513(2-3):305-11. PubMed ID: 11904169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase.
    Zheng H; Ji C; Gu S; Shi B; Wang J; Xie Y; Mao Y
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1401-7. PubMed ID: 15883030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation.
    Lin PS; Marshall NF; Dahmus ME
    Prog Nucleic Acid Res Mol Biol; 2002; 72():333-65. PubMed ID: 12206456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphatase activity of small C-terminal domain phosphatase 1 (SCP1) controls the stability of the key neuronal regulator RE1-silencing transcription factor (REST).
    Burkholder NT; Mayfield JE; Yu X; Irani S; Arce DK; Jiang F; Matthews WL; Xue Y; Zhang YJ
    J Biol Chem; 2018 Oct; 293(43):16851-16861. PubMed ID: 30217818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A structural perspective of CTD function.
    Meinhart A; Kamenski T; Hoeppner S; Baumli S; Cramer P
    Genes Dev; 2005 Jun; 19(12):1401-15. PubMed ID: 15964991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein phosphatase-1 dephosphorylates the C-terminal domain of RNA polymerase-II.
    Washington K; Ammosova T; Beullens M; Jerebtsova M; Kumar A; Bollen M; Nekhai S
    J Biol Chem; 2002 Oct; 277(43):40442-8. PubMed ID: 12185079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II.
    Dubois MF; Marshall NF; Nguyen VT; Dahmus GK; Bonnet F; Dahmus ME; Bensaude O
    Nucleic Acids Res; 1999 Mar; 27(5):1338-44. PubMed ID: 9973623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salt Stress and CTD PHOSPHATASE-LIKE4 Mediate the Switch between Production of Small Nuclear RNAs and mRNAs.
    Fukudome A; Sun D; Zhang X; Koiwa H
    Plant Cell; 2017 Dec; 29(12):3214-3233. PubMed ID: 29093215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective inactivation of a human neuronal silencing phosphatase by a small molecule inhibitor.
    Zhang M; Cho EJ; Burstein G; Siegel D; Zhang Y
    ACS Chem Biol; 2011 May; 6(5):511-9. PubMed ID: 21348431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional interaction of the Ess1 prolyl isomerase with components of the RNA polymerase II initiation and termination machineries.
    Krishnamurthy S; Ghazy MA; Moore C; Hampsey M
    Mol Cell Biol; 2009 Jun; 29(11):2925-34. PubMed ID: 19332564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62.
    Wang W; Liao P; Shen M; Chen T; Chen Y; Li Y; Lin X; Ge X; Wang P
    Oncogene; 2016 Jan; 35(4):491-500. PubMed ID: 25893300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex.
    Xiang K; Nagaike T; Xiang S; Kilic T; Beh MM; Manley JL; Tong L
    Nature; 2010 Oct; 467(7316):729-33. PubMed ID: 20861839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of carboxyl-terminal domain phosphatase by HIV-1 tat protein.
    Marshall NF; Dahmus GK; Dahmus ME
    J Biol Chem; 1998 Nov; 273(48):31726-30. PubMed ID: 9822634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C-terminal domain phosphatase sensitivity of RNA polymerase II in early elongation complexes on the HIV-1 and adenovirus 2 major late templates.
    Marshall NF; Dahmus ME
    J Biol Chem; 2000 Oct; 275(42):32430-7. PubMed ID: 10938286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different strategies for carboxyl-terminal domain (CTD) recognition by serine 5-specific CTD phosphatases.
    Hausmann S; Koiwa H; Krishnamurthy S; Hampsey M; Shuman S
    J Biol Chem; 2005 Nov; 280(45):37681-8. PubMed ID: 16148005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.