These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24755591)

  • 1. Efficient room-temperature synthesis of a highly strained carbon nanohoop fragment of buckminsterfullerene.
    Evans PJ; Darzi ER; Jasti R
    Nat Chem; 2014 May; 6(5):404-8. PubMed ID: 24755591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena.
    Golder MR; Jasti R
    Acc Chem Res; 2015 Mar; 48(3):557-66. PubMed ID: 25689579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size- and orientation-selective encapsulation of C(70) by cycloparaphenylenes.
    Iwamoto T; Watanabe Y; Takaya H; Haino T; Yasuda N; Yamago S
    Chemistry; 2013 Oct; 19(42):14061-8. PubMed ID: 24108598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of a highly strained donor-acceptor nanohoop.
    Van Raden JM; Darzi ER; Zakharov LN; Jasti R
    Org Biomol Chem; 2016 Jun; 14(24):5721-7. PubMed ID: 26881906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onion-type complexation based on carbon nanorings and a buckminsterfullerene.
    Kawase T; Tanaka K; Shiono N; Seirai Y; Oda M
    Angew Chem Int Ed Engl; 2004 Mar; 43(13):1722-4. PubMed ID: 15038048
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis and Electrochemistry of New Furylpyrazolino[60]fullerene Derivatives by Efficient Microwave Radiation.
    Al-Matar HM; BinSabt MH; Shalaby MA
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-state structures of peapod bearings composed of finite single-wall carbon nanotube and fullerene molecules.
    Sato S; Yamasaki T; Isobe H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8374-9. PubMed ID: 24912184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes.
    Omachi H; Segawa Y; Itami K
    Acc Chem Res; 2012 Aug; 45(8):1378-89. PubMed ID: 22587963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycloparaphenylene-based ionic donor-acceptor supramolecule: isolation and characterization of Li⁺@C60⊂[10]CPP.
    Ueno H; Nishihara T; Segawa Y; Itami K
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3707-11. PubMed ID: 25693784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes.
    Okazaki T; Okubo S; Nakanishi T; Joung SK; Saito T; Otani M; Okada S; Bandow S; Iijima S
    J Am Chem Soc; 2008 Mar; 130(12):4122-8. PubMed ID: 18311979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanohoops: excited singlet and triplet behavior of [9]- and [12]-cycloparaphenylene.
    Hines DA; Darzi ER; Jasti R; Kamat PV
    J Phys Chem A; 2014 Mar; 118(9):1595-600. PubMed ID: 24502323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of fullerene nanowhiskers by liquid-liquid interfacial precipitation: influence of C60 solubility.
    Sathish M; Miyazawa K
    Molecules; 2012 Mar; 17(4):3858-65. PubMed ID: 22456616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Room temperature synthesis of water-soluble spherical particles of a uniform diameter composed of carbon nanobelts and C
    Choi S; Kurosu S; Mashiko Y; Minakawa T; Maekawa T
    Sci Rep; 2022 Sep; 12(1):15207. PubMed ID: 36076008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cluster solvation models of carbon nanostructures: extension to fullerenes, tubes, and buds.
    Torrens F; Castellano G
    J Mol Model; 2014 Jun; 20(6):2263. PubMed ID: 24869779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying single-wall carbon nanotubes through encapsulation: from optical methods till magnetic resonance.
    Simon F
    J Nanosci Nanotechnol; 2007; 7(4-5):1197-220. PubMed ID: 17450887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local modifications of single-wall carbon nanotubes induced by bond formation with encapsulated fullerenes.
    Yumura T; Kertesz M; Iijima S
    J Phys Chem B; 2007 Feb; 111(5):1099-109. PubMed ID: 17266263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding high-yield catalyst-free growth of horizontally aligned single-walled carbon nanotubes nucleated by activated C60 species.
    Ibrahim I; Bachmatiuk A; Grimm D; Popov A; Makharza S; Knupfer M; Büchner B; Cuniberti G; Rümmeli MH
    ACS Nano; 2012 Dec; 6(12):10825-34. PubMed ID: 23186015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method for the containment and purification of filled open-ended single wall carbon nanotubes using C60 molecules.
    Shao L; Lin TW; Tobias G; Green ML
    Chem Commun (Camb); 2008 May; (18):2164-6. PubMed ID: 18438503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective formation and efficient photocurrent generation of [70]fullerene-single-walled carbon nanotube composites.
    Umeyama T; Tezuka N; Seki S; Matano Y; Nishi M; Hirao K; Lehtivuori H; Tkachenko NV; Lemmetyinen H; Nakao Y; Sakaki S; Imahori H
    Adv Mater; 2010 Apr; 22(15):1767-70. PubMed ID: 20496413
    [No Abstract]   [Full Text] [Related]  

  • 20. Snapshots of the Fragmentation for C
    Lee JY; Lee C; Osawa E; Choi JW; Sur JC; Lee KH
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.