These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 24755708)

  • 1. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors.
    Gong Y; Wagner MJ; Zhong Li J; Schnitzer MJ
    Nat Commun; 2014 Apr; 5():3674. PubMed ID: 24755708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Archaerhodopsin Fluorescent Protein Voltage Indicators.
    Gong Y; Li JZ; Schnitzer MJ
    PLoS One; 2013; 8(6):e66959. PubMed ID: 23840563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.
    Ghitani N; Bayguinov PO; Ma Y; Jackson MB
    J Neurophysiol; 2015 Feb; 113(4):1249-59. PubMed ID: 25411462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-speed, bright, red fluorescent voltage sensor to detect neural activity.
    Beck C; Gong Y
    Sci Rep; 2019 Nov; 9(1):15878. PubMed ID: 31685893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor.
    Gong Y; Huang C; Li JZ; Grewe BF; Zhang Y; Eismann S; Schnitzer MJ
    Science; 2015 Dec; 350(6266):1361-6. PubMed ID: 26586188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolving capabilities of rhodopsin-based genetically encoded voltage indicators.
    Gong Y
    Curr Opin Chem Biol; 2015 Aug; 27():84-9. PubMed ID: 26143170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics-informed two-photon voltage imaging using FRET-opsin voltage indicators.
    Brooks FP; Davis HC; Park P; Qi Y; Cohen AE
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin-based voltage imaging tools for use in muscles and neurons of
    Azimi Hashemi N; Bergs ACF; Schüler C; Scheiwe AR; Steuer Costa W; Bach M; Liewald JF; Gottschalk A
    Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17051-17060. PubMed ID: 31371514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live-cell transforms between Ca2+ transients and FRET responses for a troponin-C-based Ca2+ sensor.
    Tay LH; Griesbeck O; Yue DT
    Biophys J; 2007 Dec; 93(11):4031-40. PubMed ID: 17704158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity.
    Ochmann SE; Joshi H; Büber E; Franquelim HG; Stegemann P; Saccà B; Keyser UF; Aksimentiev A; Tinnefeld P
    Nano Lett; 2021 Oct; 21(20):8634-8641. PubMed ID: 34662130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane potential sensing: Material design and method development for single particle optical electrophysiology.
    Roy D; Shapira Z; Weiss S
    J Chem Phys; 2022 Feb; 156(8):084201. PubMed ID: 35232195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bright and fast multicoloured voltage reporters via electrochromic FRET.
    Zou P; Zhao Y; Douglass AD; Hochbaum DR; Brinks D; Werley CA; Harrison DJ; Campbell RE; Cohen AE
    Nat Commun; 2014 Aug; 5():4625. PubMed ID: 25118186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.
    Bayguinov PO; Ma Y; Gao Y; Zhao X; Jackson MB
    J Neurosci; 2017 Sep; 37(38):9305-9319. PubMed ID: 28842412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.
    Mishina Y; Mutoh H; Song C; Knöpfel T
    Front Mol Neurosci; 2014; 7():78. PubMed ID: 25324718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals.
    Marshall JD; Schnitzer MJ
    ACS Nano; 2013 May; 7(5):4601-9. PubMed ID: 23614672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bright and sensitive red voltage indicators for imaging action potentials in brain slices and pancreatic islets.
    Han Y; Yang J; Li Y; Chen Y; Ren H; Ding R; Qian W; Ren K; Xie B; Deng M; Xiao Y; Chu J; Zou P
    Sci Adv; 2023 Nov; 9(47):eadi4208. PubMed ID: 37992174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quaternary structures of opsin in live cells revealed by FRET spectrometry.
    Mishra AK; Gragg M; Stoneman MR; Biener G; Oliver JA; Miszta P; Filipek S; Raicu V; Park PS
    Biochem J; 2016 Nov; 473(21):3819-3836. PubMed ID: 27623775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering rhodopsins' activation spectra using a FRET-based approach.
    Beck C; Gong Y
    Biophys J; 2022 May; 121(9):1765-1776. PubMed ID: 35331688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Voltage Nanosensors Enable Real-Time Imaging of Neuronal Activities in Mice and Zebrafish.
    Liu J; Zhang R; Shang C; Zhang Y; Feng Y; Pan L; Xu B; Hyeon T; Bu W; Shi J; Du J
    J Am Chem Soc; 2020 Apr; 142(17):7858-7867. PubMed ID: 32259437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential.
    Guerrero G; Siegel MS; Roska B; Loots E; Isacoff EY
    Biophys J; 2002 Dec; 83(6):3607-18. PubMed ID: 12496128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.