These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 24755780)
21. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. Abdelfattah AS; Farhi SL; Zhao Y; Brinks D; Zou P; Ruangkittisakul A; Platisa J; Pieribone VA; Ballanyi K; Cohen AE; Campbell RE J Neurosci; 2016 Feb; 36(8):2458-72. PubMed ID: 26911693 [TBL] [Abstract][Full Text] [Related]
22. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein. Kang BE; Lee S; Baker BJ Neurosci Res; 2019 Sep; 146():13-21. PubMed ID: 30342069 [TBL] [Abstract][Full Text] [Related]
23. Second Harmonic Imaging of Membrane Potential. Loew LM; Lewis A Adv Exp Med Biol; 2015; 859():473-92. PubMed ID: 26238065 [TBL] [Abstract][Full Text] [Related]
24. Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse. Lou S; Adam Y; Weinstein EN; Williams E; Williams K; Parot V; Kavokine N; Liberles S; Madisen L; Zeng H; Cohen AE J Neurosci; 2016 Oct; 36(43):11059-11073. PubMed ID: 27798186 [TBL] [Abstract][Full Text] [Related]
25. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor. Ghitani N; Bayguinov PO; Ma Y; Jackson MB J Neurophysiol; 2015 Feb; 113(4):1249-59. PubMed ID: 25411462 [TBL] [Abstract][Full Text] [Related]
26. Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. Bradley J; Luo R; Otis TS; DiGregorio DA J Neurosci; 2009 Jul; 29(29):9197-209. PubMed ID: 19625510 [TBL] [Abstract][Full Text] [Related]
27. Spying on Neuronal Membrane Potential with Genetically Targetable Voltage Indicators. Grenier V; Daws BR; Liu P; Miller EW J Am Chem Soc; 2019 Jan; 141(3):1349-1358. PubMed ID: 30628785 [TBL] [Abstract][Full Text] [Related]
28. Small molecule fluorescent voltage indicators for studying membrane potential. Miller EW Curr Opin Chem Biol; 2016 Aug; 33():74-80. PubMed ID: 27318561 [TBL] [Abstract][Full Text] [Related]
29. [Advanced optical recording of neuronal activity with voltage-sensitive dyes]. Nikitin ES; Aseev NA; Balaban PM Zh Vyssh Nerv Deiat Im I P Pavlova; 2013; 63(6):656-66. PubMed ID: 25464756 [TBL] [Abstract][Full Text] [Related]
30. Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice. Villette V; Chavarha M; Dimov IK; Bradley J; Pradhan L; Mathieu B; Evans SW; Chamberland S; Shi D; Yang R; Kim BB; Ayon A; Jalil A; St-Pierre F; Schnitzer MJ; Bi G; Toth K; Ding J; Dieudonné S; Lin MZ Cell; 2019 Dec; 179(7):1590-1608.e23. PubMed ID: 31835034 [TBL] [Abstract][Full Text] [Related]
31. A high-speed, bright, red fluorescent voltage sensor to detect neural activity. Beck C; Gong Y Sci Rep; 2019 Nov; 9(1):15878. PubMed ID: 31685893 [TBL] [Abstract][Full Text] [Related]
32. Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. Baker BJ; Jin L; Han Z; Cohen LB; Popovic M; Platisa J; Pieribone V J Neurosci Methods; 2012 Jul; 208(2):190-6. PubMed ID: 22634212 [TBL] [Abstract][Full Text] [Related]
33. Optical detection of neuron connectivity by random access two-photon microscopy. Shafeghat N; Heidarinejad M; Murata N; Nakamura H; Inoue T J Neurosci Methods; 2016 Apr; 263():48-56. PubMed ID: 26851307 [TBL] [Abstract][Full Text] [Related]
34. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. Fink AE; Bender KJ; Trussell LO; Otis TS; DiGregorio DA PLoS One; 2012; 7(8):e41434. PubMed ID: 22870221 [TBL] [Abstract][Full Text] [Related]
35. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. Murata Y; Okamura Y J Physiol; 2007 Sep; 583(Pt 3):875-89. PubMed ID: 17615106 [TBL] [Abstract][Full Text] [Related]
36. Genetically encoded voltage indicators for large scale cortical imaging come of age. Knöpfel T; Gallero-Salas Y; Song C Curr Opin Chem Biol; 2015 Aug; 27():75-83. PubMed ID: 26115448 [TBL] [Abstract][Full Text] [Related]
37. Screening fluorescent voltage indicators with spontaneously spiking HEK cells. Park J; Werley CA; Venkatachalam V; Kralj JM; Dib-Hajj SD; Waxman SG; Cohen AE PLoS One; 2013; 8(12):e85221. PubMed ID: 24391999 [TBL] [Abstract][Full Text] [Related]
38. Characterization of voltage-sensitive dyes in living cells using two-photon excitation. Acker CD; Loew LM Methods Mol Biol; 2013; 995():147-60. PubMed ID: 23494378 [TBL] [Abstract][Full Text] [Related]
39. Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision. Ranganathan GN; Koester HJ J Neurophysiol; 2010 Sep; 104(3):1812-24. PubMed ID: 20610791 [TBL] [Abstract][Full Text] [Related]
40. Recent progress in voltage-sensitive dye imaging for neuroscience. Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]