These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24755961)
21. Simulating Mars Drilling Mission for Searching for Life: Sánchez-García L; Fernández-Martínez MA; Moreno-Paz M; Carrizo D; García-Villadangos M; Manchado JM; Stoker CR; Glass B; Parro V Astrobiology; 2020 Sep; 20(9):1029-1047. PubMed ID: 31916858 [TBL] [Abstract][Full Text] [Related]
22. Comparative microbial ecology study of the sediments and the water column of the Río Tinto, an extreme acidic environment. García-Moyano A; González-Toril E; Aguilera Á; Amils R FEMS Microbiol Ecol; 2012 Aug; 81(2):303-14. PubMed ID: 22385317 [TBL] [Abstract][Full Text] [Related]
23. Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Sanz JL; Rodríguez N; Díaz EE; Amils R Environ Microbiol; 2011 Aug; 13(8):2336-41. PubMed ID: 21605308 [TBL] [Abstract][Full Text] [Related]
24. Promotion and nucleation of carbonate precipitation during microbial iron reduction. Zeng Z; Tice MM Geobiology; 2014 Jul; 12(4):362-71. PubMed ID: 24862734 [TBL] [Abstract][Full Text] [Related]
25. Organic carbon and reducing conditions lead to cadmium immobilization by secondary Fe mineral formation in a pH-neutral soil. Muehe EM; Adaktylou IJ; Obst M; Zeitvogel F; Behrens S; Planer-Friedrich B; Kraemer U; Kappler A Environ Sci Technol; 2013; 47(23):13430-9. PubMed ID: 24191747 [TBL] [Abstract][Full Text] [Related]
26. Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Sánchez-Andrea I; Rojas-Ojeda P; Amils R; Sanz JL Extremophiles; 2012 Nov; 16(6):829-39. PubMed ID: 22956355 [TBL] [Abstract][Full Text] [Related]
27. Experimental and Numerical Simulation of the Formation of Cold Seep Carbonates in Marine Sediments. Ye T; Jin G; Wu D; Liu AL Int J Environ Res Public Health; 2019 Apr; 16(8):. PubMed ID: 31013654 [TBL] [Abstract][Full Text] [Related]
28. Morphological, Microstructural, and In Situ Chemical Characteristics of Siderite Produced by Iron-Reducing Bacteria. Han X; Wang F; Zheng S; Qiu H; Liu Y; Wang J; Menguy N; Leroy E; Bourgon J; Kappler A; Liu F; Pan Y; Li J Environ Sci Technol; 2024 Jun; 58(25):11016-11026. PubMed ID: 38743591 [TBL] [Abstract][Full Text] [Related]
29. Iron and Carbon Dynamics during Aging and Reductive Transformation of Biogenic Ferrihydrite. Cismasu AC; Williams KH; Nico PS Environ Sci Technol; 2016 Jan; 50(1):25-35. PubMed ID: 26605981 [TBL] [Abstract][Full Text] [Related]
30. Suboxic diagenesis in banded iron formations. Walker JC Nature; 1984 May; 309():340-2. PubMed ID: 11541981 [TBL] [Abstract][Full Text] [Related]
31. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. Veizer J; Hoefs J; Lowe DR; Thurston PC Geochim Cosmochim Acta; 1989; 53():859-71. PubMed ID: 11539784 [TBL] [Abstract][Full Text] [Related]
32. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Wendt-Potthoff K; Koschorreck M Microb Ecol; 2002 Jan; 43(1):92-106. PubMed ID: 11984632 [TBL] [Abstract][Full Text] [Related]
33. Microbially Induced Formation of Fe Carbonates by Metal-Reducing Bacteria Enriched from a CO₂ Repository Candidate Site. Kang S; Roh Y J Nanosci Nanotechnol; 2018 Feb; 18(2):1137-1140. PubMed ID: 29448546 [TBL] [Abstract][Full Text] [Related]
34. pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments. Blöthe M; Akob DM; Kostka JE; Göschel K; Drake HL; Küsel K Appl Environ Microbiol; 2008 Feb; 74(4):1019-29. PubMed ID: 18083864 [TBL] [Abstract][Full Text] [Related]
35. Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Oggerin M; Tornos F; Rodríguez N; del Moral C; Sánchez-Román M; Amils R Environ Microbiol; 2013 Aug; 15(8):2228-37. PubMed ID: 23425574 [TBL] [Abstract][Full Text] [Related]
36. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Küsel K; Dorsch T; Acker G; Stackebrandt E Appl Environ Microbiol; 1999 Aug; 65(8):3633-40. PubMed ID: 10427060 [TBL] [Abstract][Full Text] [Related]
37. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites. Gallagher M; Turner EC; Kamber BS Geobiology; 2015 Jul; 13(4):316-39. PubMed ID: 25917609 [TBL] [Abstract][Full Text] [Related]
38. Microbial Synthesis of Iron Sulfide (FeS) and Iron Carbonate (FeCO3) Nanoparticles. Kim Y; Lee Y; Roh Y J Nanosci Nanotechnol; 2015 Aug; 15(8):5794-7. PubMed ID: 26369153 [TBL] [Abstract][Full Text] [Related]
39. Putative fossilized fungi from the lithified volcaniclastic apron of Gran Canaria, Spain. Ivarsson M; Broman C; Holmström SJ; Ahlbom M; Lindblom S; Holm NG Astrobiology; 2011 Sep; 11(7):633-50. PubMed ID: 21895442 [TBL] [Abstract][Full Text] [Related]
40. Understanding and creating biocementing beachrocks via biostimulation of indigenous microbial communities. Ramachandran AL; Polat P; Mukherjee A; Dhami NK Appl Microbiol Biotechnol; 2020 Apr; 104(8):3655-3673. PubMed ID: 32095860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]