These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24756029)

  • 1. Evolution: why all plumes and jets evolve to round cross sections.
    Bejan A; Ziaei S; Lorente S
    Sci Rep; 2014 Apr; 4():4730. PubMed ID: 24756029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jet flow in steadily swimming adult squid.
    Anderson EJ; Grosenbaugh MA
    J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nozzle geometry on the dynamics and mixing of self-similar turbulent jets.
    Nejatipour P; Khorsandi B
    Water Sci Technol; 2021 Dec; 84(12):3907-3915. PubMed ID: 34928851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamics of Vortical Gas Jets Coupled to Point-Like Suction.
    Lee JY; Kottke PA; Fedorov AG
    Phys Fluids (1994); 2020 Oct; 32(10):. PubMed ID: 33184554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing the structure and shape of stenotic and regurgitant jets: an in vitro investigation using Doppler color flow mapping and optical flow visualization.
    Krabill KA; Sung HW; Tamura T; Chung KJ; Yoganathan AP; Sahn DJ
    J Am Coll Cardiol; 1989 Jun; 13(7):1672-81. PubMed ID: 2723278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of orifice geometry on the shape of jets: an in vitro Doppler color flow study.
    Thomas JD; O'Shea JP; Rodriguez L; Popovic AD; Svizerro T; Weyman AE
    J Am Coll Cardiol; 1991 Mar; 17(4):901-8. PubMed ID: 1999627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impinging laminar jets at moderate Reynolds numbers and separation distances.
    Bergthorson JM; Sone K; Mattner TW; Dimotakis PE; Goodwin DG; Meiron DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066307. PubMed ID: 16486059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method of measuring the peak flow rate and the regurgitant volume of regurgitation based on the characteristics of turbulent free jets.
    Sugawara M; Hirai A; Seo Y; Miyajima Y; Uchibori T
    Front Med Biol Eng; 1991; 3(1):45-55. PubMed ID: 1854673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clusterlike instabilities in bubble-plume-driven flows.
    Etha SA; Jena A; Lakkaraju R
    Phys Rev E; 2019 May; 99(5-1):053101. PubMed ID: 31212562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity measurements within confined turbulent jets: application to cardiovalvular regurgitation.
    Liu H; Winoto SH; Shah DA
    Ann Biomed Eng; 1997; 25(6):939-48. PubMed ID: 9395040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of adjacent surfaces of different shapes on regurgitant jet sizes: an in vitro study using color Doppler imaging and laser-illuminated dye visualization.
    Zhang J; Shiota T; Shandas R; Deng YB; Weintraub R; Paik J; Liepmann D; Sahn DJ
    J Am Coll Cardiol; 1993 Nov; 22(5):1522-9. PubMed ID: 8227814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for noninvasive quantification of valvular regurgitation based on conservation of momentum. In vitro validation.
    Cape EG; Skoufis EG; Weyman AE; Yoganathan AP; Levine RA
    Circulation; 1989 Jun; 79(6):1343-53. PubMed ID: 2720933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of asymmetric valvular regurgitant jets by color Doppler ultrasound in vitro.
    Stewart SF; Burté F; Clark RE
    Echocardiography; 1993 Jan; 10(1):23-36. PubMed ID: 10148114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A laboratory investigation into the influence of a rigid vegetation on the evolution of a round turbulent jet discharged within a cross flow.
    Malcangio D; Mossa M
    J Environ Manage; 2016 May; 173():105-20. PubMed ID: 26978732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experiments with rectangular supersonic jets with potential noise reduction technology.
    Scupski N; Akatsuka J; McLaughlin DK; Morris PJ
    J Acoust Soc Am; 2022 Jan; 151(1):56. PubMed ID: 35105007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic damping of jet flows in quasi-two-dimensional Rayleigh-Bénard convection.
    Aggarwal A; Aurnou JM; Horn S
    Phys Rev E; 2022 Oct; 106(4-2):045104. PubMed ID: 36397562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of turbulent shear stress in free jets: application to valvular regurgitation.
    Winoto SH; Shah DA; Liu H
    Ann Biomed Eng; 1996; 24(2):321-7. PubMed ID: 8678361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional simulation of square jets in cross-flow.
    Sau A; Sheu TW; Hwang RR; Yang WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066302. PubMed ID: 15244721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of entropy driven jet symmetry transitions.
    Pease LF; Mahoney LA; Yokuda ST; Bamberger JA; Minette MJ
    Sci Rep; 2022 Aug; 12(1):13230. PubMed ID: 35918355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro flow mapping of regurgitant jets. Systematic description of free jet with laser Doppler velocimetry.
    Diebold B; Delouche A; Delouche P; Guglielmi JP; Dumee P; Herment A
    Circulation; 1996 Jul; 94(2):158-69. PubMed ID: 8674174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.