BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 24756567)

  • 1. The regulation of TGF-β/SMAD signaling by protein deubiquitination.
    Zhang J; Zhang X; Xie F; Zhang Z; van Dam H; Zhang L; Zhou F
    Protein Cell; 2014 Jul; 5(7):503-17. PubMed ID: 24756567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGF-β signaling pathway mediated by deubiquitinating enzymes.
    Kim SY; Baek KH
    Cell Mol Life Sci; 2019 Feb; 76(4):653-665. PubMed ID: 30349992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway.
    Wicks SJ; Grocott T; Haros K; Maillard M; ten Dijke P; Chantry A
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):761-3. PubMed ID: 17052192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF-β signaling, inhibits dauer larva formation, and enhances lung tumorigenesis.
    Nagata A; Itoh F; Sasho A; Sugita K; Suzuki R; Hinata H; Shimoda Y; Suzuki E; Maemoto Y; Inagawa T; Fujikawa Y; Ikeda E; Fujii C; Inoue H
    J Biol Chem; 2020 Jul; 295(27):9105-9120. PubMed ID: 32371398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the TGF-β pathway by deubiquitinases in cancer.
    Liu S; de Boeck M; van Dam H; Ten Dijke P
    Int J Biochem Cell Biol; 2016 Jul; 76():135-45. PubMed ID: 27155333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPSB1, a Novel Negative Regulator of the Transforming Growth Factor-β Signaling Pathway Targeting the Type II Receptor.
    Liu S; Nheu T; Luwor R; Nicholson SE; Zhu HJ
    J Biol Chem; 2015 Jul; 290(29):17894-17908. PubMed ID: 26032413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospho-control of TGF-beta superfamily signaling.
    Wrighton KH; Lin X; Feng XH
    Cell Res; 2009 Jan; 19(1):8-20. PubMed ID: 19114991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor.
    Zhang L; Zhou F; Drabsch Y; Gao R; Snaar-Jagalska BE; Mickanin C; Huang H; Sheppard KA; Porter JA; Lu CX; ten Dijke P
    Nat Cell Biol; 2012 Jun; 14(7):717-26. PubMed ID: 22706160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. USP15 regulates SMURF2 kinetics through C-lobe mediated deubiquitination.
    Iyengar PV; Jaynes P; Rodon L; Lama D; Law KP; Lim YP; Verma C; Seoane J; Eichhorn PJ
    Sci Rep; 2015 Oct; 5():14733. PubMed ID: 26435193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of transforming growth factor-beta type II receptor is caused by the enhanced ubiquitin-dependent degradation in human renal cell carcinoma.
    Fukasawa H; Yamamoto T; Fujigaki Y; Misaki T; Ohashi N; Takayama T; Suzuki S; Mugiya S; Oda T; Uchida C; Kitagawa K; Hattori T; Hayashi H; Ozono S; Kitagawa M; Hishida A
    Int J Cancer; 2010 Oct; 127(7):1517-25. PubMed ID: 20073064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of TGF-β family signalling by ubiquitination and deubiquitination.
    Imamura T; Oshima Y; Hikita A
    J Biochem; 2013 Dec; 154(6):481-9. PubMed ID: 24165200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kindlin-2 mediates activation of TGF-β/Smad signaling and renal fibrosis.
    Wei X; Xia Y; Li F; Tang Y; Nie J; Liu Y; Zhou Z; Zhang H; Hou FF
    J Am Soc Nephrol; 2013 Sep; 24(9):1387-98. PubMed ID: 23723426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma.
    Eichhorn PJ; Rodón L; Gonzàlez-Juncà A; Dirac A; Gili M; Martínez-Sáez E; Aura C; Barba I; Peg V; Prat A; Cuartas I; Jimenez J; García-Dorado D; Sahuquillo J; Bernards R; Baselga J; Seoane J
    Nat Med; 2012 Feb; 18(3):429-35. PubMed ID: 22344298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HILI inhibits TGF-β signaling by interacting with Hsp90 and promoting TβR degradation.
    Zhang K; Lu Y; Yang P; Li C; Sun H; Tao D; Liu Y; Zhang S; Ma Y
    PLoS One; 2012; 7(7):e41973. PubMed ID: 22848678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquitination and regulation of Smad7 in the TGF-β1/Smad signaling of aristolochic acid nephropathy.
    Tian Y; Liao F; Wu G; Chang D; Yang Y; Dong X; Zhang Z; Zhang Y; Wu G
    Toxicol Mech Methods; 2015; 25(8):645-52. PubMed ID: 26108275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SnoN in TGF-beta signaling and cancer biology.
    Pot I; Bonni S
    Curr Mol Med; 2008 Jun; 8(4):319-28. PubMed ID: 18537639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling.
    Wicks SJ; Haros K; Maillard M; Song L; Cohen RE; Dijke PT; Chantry A
    Oncogene; 2005 Dec; 24(54):8080-4. PubMed ID: 16027725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin removal in the TGF-β pathway.
    Aggarwal K; Massagué J
    Nat Cell Biol; 2012 Jun; 14(7):656-7. PubMed ID: 22743709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor.
    Kuratomi G; Komuro A; Goto K; Shinozaki M; Miyazawa K; Miyazono K; Imamura T
    Biochem J; 2005 Mar; 386(Pt 3):461-70. PubMed ID: 15496141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways.
    Herhaus L; Sapkota GP
    Cell Signal; 2014 Oct; 26(10):2186-92. PubMed ID: 25007997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.