These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 24756611)

  • 1. Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries.
    Pan L; Wang H; Gao D; Chen S; Tan L; Li L
    Chem Commun (Camb); 2014 Jun; 50(44):5878-80. PubMed ID: 24756611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries.
    Tao H; Fan LZ; Song WL; Wu M; He X; Qu X
    Nanoscale; 2014 Mar; 6(6):3138-42. PubMed ID: 24496138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ carbon-coated yolk-shell V2O3 microspheres for lithium-ion batteries.
    Jiang L; Qu Y; Ren Z; Yu P; Zhao D; Zhou W; Wang L; Fu H
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1595-601. PubMed ID: 25569599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries.
    Chen S; Gordin ML; Yi R; Howlett G; Sohn H; Wang D
    Phys Chem Chem Phys; 2012 Oct; 14(37):12741-5. PubMed ID: 22886283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of Ge@C core-shell nanocomposites for high-performance lithium storage in lithium-ion batteries.
    Wang Y; Wang G
    Chem Asian J; 2013 Dec; 8(12):3142-6. PubMed ID: 24006143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst-free synthesis of Si-SiOx core-shell nanowire anodes for high-rate and high-capacity lithium-ion batteries.
    Lim KW; Lee JI; Yang J; Kim YK; Jeong HY; Park S; Shin HS
    ACS Appl Mater Interfaces; 2014 May; 6(9):6340-5. PubMed ID: 24754908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes.
    Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C
    Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and lithium storage performance of yolk-shell Si@void@C nanocomposites.
    Su L; Xie J; Xu Y; Wang L; Wang Y; Ren M
    Phys Chem Chem Phys; 2015 Jul; 17(27):17562-5. PubMed ID: 26082288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano/Micro-Structured Si/C Anodes with High Initial Coulombic Efficiency in Li-Ion Batteries.
    Xu Q; Li JY; Yin YX; Kong YM; Guo YG; Wan LJ
    Chem Asian J; 2016 Apr; 11(8):1205-9. PubMed ID: 26853080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co
    Geng H; Yang J; Dai Z; Zhang Y; Zheng Y; Yu H; Wang H; Luo Z; Guo Y; Zhang Y; Fan H; Wu X; Zheng J; Yang Y; Yan Q; Gu H
    Small; 2017 Apr; 13(14):. PubMed ID: 28112864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries.
    Lin Z; Liu Z; Dudney NJ; Liang C
    ACS Nano; 2013 Mar; 7(3):2829-33. PubMed ID: 23427822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries.
    Park AR; Kim JS; Kim KS; Zhang K; Park J; Park JH; Lee JK; Yoo PJ
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1702-8. PubMed ID: 24443772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ synthesis of carbon doped porous silicon nanocomposites as high-performance anodes for lithium-ion batteries.
    Chen Y; Bao L; Du N; Yang T; Mao Q; Lu X; Lin Y; Ji Z
    Nanotechnology; 2019 Jan; 30(3):035602. PubMed ID: 30418956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries.
    Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Fe3O4@C core-shell nanorings and their enhanced electrochemical performance for lithium-ion batteries.
    Wang L; Liang J; Zhu Y; Mei T; Zhang X; Yang Q; Qian Y
    Nanoscale; 2013 May; 5(9):3627-31. PubMed ID: 23519322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Managing voids of Si anodes in lithium ion batteries.
    Li X; Zhi L
    Nanoscale; 2013 Oct; 5(19):8864-73. PubMed ID: 23942726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell Si-N-doped C assembled via an oxidative template for lithium-ion anodes.
    Tu J; Hu L; Jiao S; Hou J; Zhu H
    Phys Chem Chem Phys; 2013 Nov; 15(42):18549-54. PubMed ID: 24076966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.