These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 24757429)

  • 21. Comparing biomechanical strength of unicortical locking plate versus bicortical compression plate for transverse midshaft metacarpal fracture.
    Shanmugam R; Jian CYCCS; Haseeb A; Aik S
    J Orthop Surg (Hong Kong); 2018; 26(3):2309499018802511. PubMed ID: 30270746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone plate fixation ability on the dorsal and lateral sides of a metacarpal shaft transverse fracture.
    Chiu YC; Hsu CE; Ho TY; Ting YN; Tsai MT; Hsu JT
    J Orthop Surg Res; 2021 Jul; 16(1):441. PubMed ID: 34233702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Dorsal Plate Fixation Versus Intramedullary Headless Screw Fixation of Unstable Metacarpal Shaft Fractures: A Biomechanical Study.
    Melamed E; Hinds RM; Gottschalk MB; Kennedy OD; Capo JT
    Hand (N Y); 2016 Dec; 11(4):421-426. PubMed ID: 28149208
    [No Abstract]   [Full Text] [Related]  

  • 24. Higher stability with locking plates in hand surgery? Biomechanical investigation of the TriLock system in a fracture model.
    Doht S; Jansen H; Meffert R; Frey S
    Int Orthop; 2012 Aug; 36(8):1641-6. PubMed ID: 22426933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental fracture model versus osteotomy model in metacarpal bone plate fixation.
    Ochman S; Vordemvenne T; Paletta J; Raschke MJ; Meffert RH; Doht S
    ScientificWorldJournal; 2011; 11():1692-8. PubMed ID: 22125428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biomechanical study comparing plate fixation using unicortical and bicortical screws in transverse metacarpal fracture models subjected to cyclic loading.
    Afshar R; Fong TS; Latifi MH; Kanthan SR; Kamarul T
    J Hand Surg Eur Vol; 2012 Jun; 37(5):396-401. PubMed ID: 22019989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delayed foreign-body reaction to absorbable implants in metacarpal fracture treatment.
    Givissis PK; Stavridis SI; Papagelopoulos PJ; Antonarakos PD; Christodoulou AG
    Clin Orthop Relat Res; 2010 Dec; 468(12):3377-83. PubMed ID: 20473595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison between locking and non-locking plates for fixation of metacarpal fractures in an animal model.
    Ochman S; Doht S; Paletta J; Langer M; Raschke MJ; Meffert RH
    J Hand Surg Am; 2010 Apr; 35(4):597-603. PubMed ID: 20299161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical comparison of double-row locking plates versus single- and double-row non-locking plates in a comminuted metacarpal fracture model.
    Gajendran VK; Szabo RM; Myo GK; Curtiss SB
    J Hand Surg Am; 2009 Dec; 34(10):1851-8. PubMed ID: 19897325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Early controlled passive motion improves early fracture alignment and structural properties in a closed extra-articular metacarpal fracture in a rabbit model.
    Feehan LM; Tang CS; Oxland TR
    J Hand Surg Am; 2007 Feb; 32(2):200-8. PubMed ID: 17275595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Is there evidence for early mobilization following an extraarticular hand fracture?
    Feehan LM; Bassett K
    J Hand Ther; 2004; 17(2):300-8. PubMed ID: 15162112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Metacarpal fractures: treatment indications and options. Results of a multicenter study].
    Küntscher MV; Schäfer DJ; Germann G; Siebert HR
    Chirurg; 2003 Nov; 74(11):1018-25. PubMed ID: 14605719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prevalence and distribution of hand fractures.
    van Onselen EB; Karim RB; Hage JJ; Ritt MJ
    J Hand Surg Br; 2003 Oct; 28(5):491-5. PubMed ID: 12954264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioabsorbable miniplating versus metallic fixation for metacarpal fractures.
    Waris E; Ashammakhi N; Happonen H; Raatikainen T; Kaarela O; Törmälä P; Santavirta S; Konttinen YT
    Clin Orthop Relat Res; 2003 May; (410):310-9. PubMed ID: 12771846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Treatment of metacarpal fractures].
    Prokop A; Jubel A; Helling HJ; Kulus S; Rehm KE
    Handchir Mikrochir Plast Chir; 2002 Sep; 34(5):328-31. PubMed ID: 12494386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biomechanical analysis of the stability of titanium bone fixation systems in proximal phalangeal fractures.
    Prevel CD; Katona T; Eppley BL; Moore K; McCarty M; Ge J
    Ann Plast Surg; 1996 Nov; 37(5):473-81. PubMed ID: 8937599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative fatigue strengths and stabilities of metacarpal internal fixation techniques.
    Firoozbakhsh KK; Moneim MS; Howey T; Castaneda E; Pirela-Cruz MA
    J Hand Surg Am; 1993 Nov; 18(6):1059-68. PubMed ID: 8294742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mini and micro plating of phalangeal and metacarpal fractures: a biomechanical study.
    Prevel CD; Eppley BL; Jackson JR; Moore K; McCarty M; Sood R; Wood R [corrected to Sood R]
    J Hand Surg Am; 1995 Jan; 20(1):44-9. PubMed ID: 7722264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A phalangeal fracture model--quantitative analysis of rigidity and failure.
    Massengill JB; Alexander H; Langrana N; Mylod A
    J Hand Surg Am; 1982 May; 7(3):264-70. PubMed ID: 7086094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of internal fixation techniques in metacarpal fractures.
    Black D; Mann RJ; Constine R; Daniels AU
    J Hand Surg Am; 1985 Jul; 10(4):466-72. PubMed ID: 4020056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.