BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24757772)

  • 21. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture.
    Sibov ST; de Souza CL; Garcia AA; Silva AR; Garcia AF; Mangolin CA; Benchimol LL; de Souza AP
    Hereditas; 2003; 139(2):107-15. PubMed ID: 15061811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes.
    Landi P; Giuliani S; Salvi S; Ferri M; Tuberosa R; Sanguineti MC
    J Exp Bot; 2010 Aug; 61(13):3553-62. PubMed ID: 20627896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating the physiological state of maize (Zea mays L.) plants by direct-injection electrospray mass spectrometry (DIESI-MS).
    García-Flores M; Juárez-Colunga S; Montero-Vargas JM; López-Arciniega JA; Chagolla A; Tiessen A; Winkler R
    Mol Biosyst; 2012 Jun; 8(6):1658-60. PubMed ID: 22513980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions.
    Jompuk C; Fracheboud Y; Stamp P; Leipner J
    J Exp Bot; 2005 Apr; 56(414):1153-63. PubMed ID: 15723825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.
    Maron LG; Piñeros MA; Guimarães CT; Magalhaes JV; Pleiman JK; Mao C; Shaff J; Belicuas SN; Kochian LV
    Plant J; 2010 Mar; 61(5):728-40. PubMed ID: 20003133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genetics of maize evolution.
    Doebley J
    Annu Rev Genet; 2004; 38():37-59. PubMed ID: 15568971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.
    Messina CD; Podlich D; Dong Z; Samples M; Cooper M
    J Exp Bot; 2011 Jan; 62(3):855-68. PubMed ID: 21041371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative genetic and QTL mapping in sorghum and maize.
    Lee M
    Symp Soc Exp Biol; 1996; 50():31-8. PubMed ID: 9039432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining ability of tropical maize lines for seed quality and agronomic traits.
    Moterle LM; Braccini AL; Scapim CA; Pinto RJ; Gonçalves LS; do Amaral Júnior AT; Silva TR
    Genet Mol Res; 2011 Sep; 10(3):2268-78. PubMed ID: 21968766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the genetic basis of plant height-related traits in response to ethylene by QTL mapping in maize (Zea mays L.).
    Zhang W; Li Z; Fang H; Zhang M; Duan L
    PLoS One; 2018; 13(2):e0193072. PubMed ID: 29466465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density resistance evaluation of maize varieties through new "Density-Yield Model" and quantification of varietal response to gradual planting density pressure.
    Tang L; Ma W; Noor MA; Li L; Hou H; Zhang X; Zhao M
    Sci Rep; 2018 Nov; 8(1):17281. PubMed ID: 30470761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breeding maize for silage and biofuel production, an illustration of a step forward with the genome sequence.
    Barrière Y; Courtial A; Chateigner-Boutin AL; Denoue D; Grima-Pettenati J
    Plant Sci; 2016 Jan; 242():310-329. PubMed ID: 26566848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can we improve the chilling tolerance of maize photosynthesis through breeding?
    Burnett AC; Kromdijk J
    J Exp Bot; 2022 May; 73(10):3138-3156. PubMed ID: 35143635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide selection and genetic improvement during modern maize breeding.
    Wang B; Lin Z; Li X; Zhao Y; Zhao B; Wu G; Ma X; Wang H; Xie Y; Li Q; Song G; Kong D; Zheng Z; Wei H; Shen R; Wu H; Chen C; Meng Z; Wang T; Li Y; Li X; Chen Y; Lai J; Hufford MB; Ross-Ibarra J; He H; Wang H
    Nat Genet; 2020 Jun; 52(6):565-571. PubMed ID: 32341525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays L.).
    Cañas RA; Amiour N; Quilleré I; Hirel B
    J Exp Bot; 2011 Apr; 62(7):2309-18. PubMed ID: 21112957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of quantitative trait Loci for resistance to southern leaf blight and days to anthesis in two maize recombinant inbred line populations.
    Balint-Kurti PJ; Zwonitzer JC; Pè ME; Pea G; Lee M; Cardinal AJ
    Phytopathology; 2008 Mar; 98(3):315-20. PubMed ID: 18944082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds.
    Andersen JR; Zein I; Wenzel G; Darnhofer B; Eder J; Ouzunova M; Lübberstedt T
    BMC Plant Biol; 2008 Jan; 8():2. PubMed ID: 18173847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta analysis.
    Xu J; Liu Y; Liu J; Cao M; Wang J; Lan H; Xu Y; Lu Y; Pan G; Rong T
    J Integr Plant Biol; 2012 Jun; 54(6):358-73. PubMed ID: 22583799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [DNA-marking of quantitative traits in corn].
    Domeniuk VP; Belousov AA; Sivolap IuM
    Tsitol Genet; 2002; 36(6):9-15. PubMed ID: 12557478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterns of selection and tissue-specific expression among maize domestication and crop improvement loci.
    Hufford KM; Canaran P; Ware DH; McMullen MD; Gaut BS
    Plant Physiol; 2007 Jul; 144(3):1642-53. PubMed ID: 17496114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.