BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24757968)

  • 1. Investigating the nature of graphene-based films prepared by vacuum filtration of graphene dispersions.
    Yi M; Liang S; Liu L; Shen Z; Zheng Y; Zhang X; Ma S
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4969-75. PubMed ID: 24757968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions.
    Lotya M; Hernandez Y; King PJ; Smith RJ; Nicolosi V; Karlsson LS; Blighe FM; De S; Wang Z; McGovern IT; Duesberg GS; Coleman JN
    J Am Chem Soc; 2009 Mar; 131(10):3611-20. PubMed ID: 19227978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix[4]arene.
    Sundramoorthy AK; Wang Y; Wang J; Che J; Thong YX; Lu AC; Chan-Park MB
    Sci Rep; 2015 Jun; 5():10716. PubMed ID: 26040436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable Nafion-functionalized graphene dispersions for transparent conducting films.
    Liu Y; Gao L; Sun J; Wang Y; Zhang J
    Nanotechnology; 2009 Nov; 20(46):465605. PubMed ID: 19847037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient Films of Pristine Graphene/Pyrene-Functional Copolymers with Janus Electrical Properties.
    Parviz D; Yu Z; Verkhoturov S; Green MJ; Hedden RC
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31813-31821. PubMed ID: 27801571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension.
    Stevens B; Guin T; Sarwar O; John A; Paton KR; Coleman JN; Grunlan JC
    Macromol Rapid Commun; 2016 Nov; 37(22):1790-1794. PubMed ID: 27673687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.
    Wang H; Wei C; Zhu K; Zhang Y; Gong C; Guo J; Zhang J; Yu L; Zhang J
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34456-34466. PubMed ID: 28901733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable functionalization and wettability transition of graphene-based films by an atomic oxygen strategy.
    Yi M; Zhang W; Shen Z; Zhang X; Zhao X; Zheng Y; Ma S
    J Nanopart Res; 2013; 15(8):1811. PubMed ID: 23990752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions.
    De S; King PJ; Lotya M; O'Neill A; Doherty EM; Hernandez Y; Duesberg GS; Coleman JN
    Small; 2010 Feb; 6(3):458-64. PubMed ID: 19859943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties.
    Liu J; Notarianni M; Will G; Tiong VT; Wang H; Motta N
    Langmuir; 2013 Oct; 29(43):13307-14. PubMed ID: 24089707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-concentration graphene dispersions with minimal stabilizer: a scaffold for enzyme immobilization for glucose oxidation.
    Sun Z; Vivekananthan J; Guschin DA; Huang X; Kuznetsov V; Ebbinghaus P; Sarfraz A; Muhler M; Schuhmann W
    Chemistry; 2014 May; 20(19):5752-61. PubMed ID: 24677350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing Self-Assembled Pyrene Structures from Exfoliated Graphene.
    Varenik M; Green MJ; Regev O
    Langmuir; 2016 Oct; 32(41):10699-10704. PubMed ID: 27723350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications.
    Zhu J; He J
    Nanoscale; 2012 Jun; 4(11):3558-66. PubMed ID: 22573099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte.
    Wang J; Manga KK; Bao Q; Loh KP
    J Am Chem Soc; 2011 Jun; 133(23):8888-91. PubMed ID: 21557613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction.
    Sun Z; Masa J; Liu Z; Schuhmann W; Muhler M
    Chemistry; 2012 May; 18(22):6972-8. PubMed ID: 22504902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets.
    Xu Y; Bai H; Lu G; Li C; Shi G
    J Am Chem Soc; 2008 May; 130(18):5856-7. PubMed ID: 18399634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(methyl methacrylate)-Assisted Exfoliation of Graphite and Its Use in Acrylonitrile-Butadiene-Styrene Composites.
    Gentiluomo S; Thorat SB; Del Río Castillo AE; Toth PS; Panda JK; Pellegrini V; Bonaccorso F
    Chemistry; 2020 May; 26(29):6715-6725. PubMed ID: 32216144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-concentration, surfactant-stabilized graphene dispersions.
    Lotya M; King PJ; Khan U; De S; Coleman JN
    ACS Nano; 2010 Jun; 4(6):3155-62. PubMed ID: 20455583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.
    Kang J; Sangwan VK; Wood JD; Hersam MC
    Acc Chem Res; 2017 Apr; 50(4):943-951. PubMed ID: 28240855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.