These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 24757970)
1. Study on the origin of amorphous carbon peaks on graphene films synthesized on nickel catalysts. Kahng YH; Kang SO; Jo G; Choe M; Park W; Lee S; Yoon J; Lee K; Lee T J Nanosci Nanotechnol; 2014 Jul; 14(7):4982-7. PubMed ID: 24757970 [TBL] [Abstract][Full Text] [Related]
2. A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks. Kahng YH; Lee S; Choe M; Jo G; Park W; Yoon J; Hong WK; Cho CH; Lee BH; Lee T Nanotechnology; 2011 Jan; 22(4):045706. PubMed ID: 21169664 [TBL] [Abstract][Full Text] [Related]
3. Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities. Kahng YH; Lee S; Park W; Jo G; Choe M; Lee JH; Yu H; Lee T; Lee K Nanotechnology; 2012 Feb; 23(7):075702. PubMed ID: 22261350 [TBL] [Abstract][Full Text] [Related]
4. Graphene growth through a recrystallization process in plasma enhanced chemical vapor deposition. Bekdüz B; Beckmann Y; Mischke J; Twellmann J; Mertin W; Bacher G Nanotechnology; 2018 Nov; 29(45):455603. PubMed ID: 30156560 [TBL] [Abstract][Full Text] [Related]
5. Direct growth of bilayer graphene on SiO₂ substrates by carbon diffusion through nickel. Peng Z; Yan Z; Sun Z; Tour JM ACS Nano; 2011 Oct; 5(10):8241-7. PubMed ID: 21888426 [TBL] [Abstract][Full Text] [Related]
6. Deposition of DLC Film on Stainless Steel Substrates Coated by Nickel Using PECVD Method. Khalaj Z; Ghoranneviss M; Vaghri E; Saghaleini A; Diudea MV Acta Chim Slov; 2012 Jun; 59(2):338-43. PubMed ID: 24061250 [TBL] [Abstract][Full Text] [Related]
7. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132 [TBL] [Abstract][Full Text] [Related]
8. Evolution of Structural and Electrical Properties of Carbon Films from Amorphous Carbon to Nanocrystalline Graphene on Quartz Glass by HFCVD. Zhai Z; Shen H; Chen J; Li X; Jiang Y ACS Appl Mater Interfaces; 2018 May; 10(20):17427-17436. PubMed ID: 29694019 [TBL] [Abstract][Full Text] [Related]
9. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films. Thiele S; Reina A; Healey P; Kedzierski J; Wyatt P; Hsu PL; Keast C; Schaefer J; Kong J Nanotechnology; 2010 Jan; 21(1):015601. PubMed ID: 19946163 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of graphene by in situ catalytic chemical vapor deposition of reed as a carbon source for VOC adsorption. Rahbar Shamskar K; Rashidi A; Aberoomand Azar P; Yousefi M; Baniyaghoob S Environ Sci Pollut Res Int; 2019 Feb; 26(4):3643-3650. PubMed ID: 30535738 [TBL] [Abstract][Full Text] [Related]
11. Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells. Cui T; Lv R; Huang ZH; Zhu H; Jia Y; Chen S; Wang K; Wu D; Kang F Nanoscale Res Lett; 2012 Aug; 7(1):453. PubMed ID: 22883426 [TBL] [Abstract][Full Text] [Related]
12. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700 [TBL] [Abstract][Full Text] [Related]
13. A novel method for large area graphene transfer on the polymer optical fiber. Kulkarni A; Kim H; Amin R; Park SH; Hong BH; Kim T J Nanosci Nanotechnol; 2012 May; 12(5):3918-21. PubMed ID: 22852325 [TBL] [Abstract][Full Text] [Related]
14. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552 [TBL] [Abstract][Full Text] [Related]
15. Influence of the pore structure of MCM-41 and SBA-15 silica fibers on atomic layer chemical vapor deposition of cobalt carbonyl. Hukkamäki J; Suvanto S; Suvanto M; Pakkanen TT Langmuir; 2004 Nov; 20(23):10288-95. PubMed ID: 15518527 [TBL] [Abstract][Full Text] [Related]
17. Spinodal decomposition of mono- to few-layer graphene on Ni substrates at low temperature. Hsu CJ; Nayak PK; Wang SC; Sung JC; Wang CL; Wu CL; Huang JL J Nanosci Nanotechnol; 2012 Mar; 12(3):2442-7. PubMed ID: 22755071 [TBL] [Abstract][Full Text] [Related]
18. Enhancing the conductivity of transparent graphene films via doping. Kim KK; Reina A; Shi Y; Park H; Li LJ; Lee YH; Kong J Nanotechnology; 2010 Jul; 21(28):285205. PubMed ID: 20585167 [TBL] [Abstract][Full Text] [Related]
19. Chemical vapor deposition of Ni-C films from bis-(ethylcyclopentadienyl) nickel. Alexandrov SE; Protopopova VS J Nanosci Nanotechnol; 2011 Sep; 11(9):8259-63. PubMed ID: 22097565 [TBL] [Abstract][Full Text] [Related]
20. Graphene as an efficient interfacial layer for electrochromic devices. Lin F; Bult JB; Nanayakkara S; Dillon AC; Richards RM; Blackburn JL; Engtrakul C ACS Appl Mater Interfaces; 2015 Jun; 7(21):11330-6. PubMed ID: 25950270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]