BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24758407)

  • 21. Poly(urethane-norbornene) Aerogels via Ring Opening Metathesis Polymerization of Dendritic Urethane-Norbornene Monomers: Structure-Property Relationships as a Function of an Aliphatic Versus an Aromatic Core and the Number of Peripheral Norbornene Moieties.
    Kanellou A; Anyfantis GC; Chriti D; Raptopoulos G; Pitsikalis M; Paraskevopoulou P
    Molecules; 2018 Apr; 23(5):. PubMed ID: 29693614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobic functionalized graphene aerogels.
    Lin Y; Ehlert GJ; Bukowsky C; Sodano HA
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2200-3. PubMed ID: 21714511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions.
    Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B
    ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ambient Pressure Hybrid Silica Monoliths with Hexamethyldisilazane: From Vitreous Hydrophilic Xerogels to Superhydrophobic Aerogels.
    Júlio MF; Ilharco LM
    ACS Omega; 2017 Aug; 2(8):5060-5070. PubMed ID: 31457783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile Fabrication of Superhydrophobic Cross-Linked Nanocellulose Aerogels for Oil-Water Separation.
    Shang Q; Chen J; Hu Y; Yang X; Hu L; Liu C; Ren X; Zhou Y
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyurea Aerogels: Synthesis, Material Properties, and Applications.
    Leventis N
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale structure and superhydrophobicity of sp(2)-bonded boron nitride aerogels.
    Pham T; Goldstein AP; Lewicki JP; Kucheyev SO; Wang C; Russell TP; Worsley MA; Woo L; Mickelson W; Zettl A
    Nanoscale; 2015 Jun; 7(23):10449-58. PubMed ID: 26007693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(Urethane-Acrylate) Aerogels via Radical Polymerization of Dendritic Urethane-Acrylate Monomers.
    Papastergiou M; Kanellou A; Chriti D; Raptopoulos G; Paraskevopoulou P
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30424515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure.
    Dong T; Tian N; Xu B; Huang X; Chi S; Liu Y; Lou CW; Lin JH
    J Hazard Mater; 2022 May; 429():128290. PubMed ID: 35066226
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A facile approach to ultralight and recyclable 3D self-assembled copolymer/graphene aerogels for efficient oil/water separation.
    Zhang S; Liu G; Gao Y; Yue Q; Gao B; Xu X; Kong W; Li N; Jiang W
    Sci Total Environ; 2019 Dec; 694():133671. PubMed ID: 31401508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation.
    Guo X; Shan J; Lai Z; Lei W; Ding R; Zhang Y; Yang H
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29670068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying.
    Bangi UK; Venkateswara Rao A; Parvathy Rao A
    Sci Technol Adv Mater; 2008 Jul; 9(3):035006. PubMed ID: 27878003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.
    Han S; Sun Q; Zheng H; Li J; Jin C
    Carbohydr Polym; 2016 Jan; 136():95-100. PubMed ID: 26572333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment.
    Chhajed M; Yadav C; Agrawal AK; Maji PK
    Carbohydr Polym; 2019 Dec; 226():115286. PubMed ID: 31582050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.
    Wang Z; Wang D; Qian Z; Guo J; Dong H; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2016-24. PubMed ID: 25558778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels.
    Lei C; Li J; Sun C; Yang H; Xia T; Hu Z; Zhang Y
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29601481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene.
    Wang C; Li Y; He X; Ding Y; Peng Q; Zhao W; Shi E; Wu S; Cao A
    Nanoscale; 2015 May; 7(17):7550-8. PubMed ID: 25864553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.
    Myint MT; Hornyak GL; Dutta J
    J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomimetic superhydrophobic and highly oleophobic cotton textiles.
    Hoefnagels HF; Wu D; de With G; Ming W
    Langmuir; 2007 Dec; 23(26):13158-63. PubMed ID: 17985939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.