These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Network-based analysis of multivariate gene expression data. Zhi W; Minturn J; Rappaport E; Brodeur G; Li H Methods Mol Biol; 2013; 972():121-39. PubMed ID: 23385535 [TBL] [Abstract][Full Text] [Related]
3. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data. Kong W; Mou X; Hu X BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140 [TBL] [Abstract][Full Text] [Related]
4. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency. Yeh HY; Cheng SW; Lin YC; Yeh CY; Lin SF; Soo VW BMC Med Genomics; 2009 Dec; 2():70. PubMed ID: 20025723 [TBL] [Abstract][Full Text] [Related]
5. Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference. Ko Y; Kim J; Rodriguez-Zas SL Genes Genomics; 2019 May; 41(5):547-555. PubMed ID: 30741379 [TBL] [Abstract][Full Text] [Related]
6. Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data. Stingo FC; Vannucci M Bioinformatics; 2011 Feb; 27(4):495-501. PubMed ID: 21159623 [TBL] [Abstract][Full Text] [Related]
13. Determining transcription factor activity from microarray data using Bayesian Markov chain Monte Carlo sampling. Kossenkov AV; Peterson AJ; Ochs MF Stud Health Technol Inform; 2007; 129(Pt 2):1250-4. PubMed ID: 17911915 [TBL] [Abstract][Full Text] [Related]
14. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. Datta S; Datta S BMC Bioinformatics; 2006 Aug; 7():397. PubMed ID: 16945146 [TBL] [Abstract][Full Text] [Related]
15. Factor analysis for gene regulatory networks and transcription factor activity profiles. Pournara I; Wernisch L BMC Bioinformatics; 2007 Feb; 8():61. PubMed ID: 17319944 [TBL] [Abstract][Full Text] [Related]
16. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Grzegorczyk M; Husmeier D Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328 [TBL] [Abstract][Full Text] [Related]
17. Gene regulatory network clustering for graph layout based on microarray gene expression data. Kojima K; Imoto S; Nagasaki M; Miyano S Genome Inform; 2010; 24():84-95. PubMed ID: 22081591 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis. Abu-Jamous B; Fa R; Roberts DJ; Nandi AK BMC Bioinformatics; 2014 Sep; 15(1):322. PubMed ID: 25267386 [TBL] [Abstract][Full Text] [Related]
19. Effect of data normalization on fuzzy clustering of DNA microarray data. Kim SY; Lee JW; Bae JS BMC Bioinformatics; 2006 Mar; 7():134. PubMed ID: 16533412 [TBL] [Abstract][Full Text] [Related]