These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24758699)

  • 1. Identifying pathogenic processes by integrating microarray data with prior knowledge.
    Nygård S; Reitan T; Clancy T; Nygaard V; Bjørnstad J; Skrbic B; Tønnessen T; Christensen G; Hovig E
    BMC Bioinformatics; 2014 Apr; 15():115. PubMed ID: 24758699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based analysis of multivariate gene expression data.
    Zhi W; Minturn J; Rappaport E; Brodeur G; Li H
    Methods Mol Biol; 2013; 972():121-39. PubMed ID: 23385535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
    Kong W; Mou X; Hu X
    BMC Bioinformatics; 2011; 12 Suppl 5(Suppl 5):S7. PubMed ID: 21989140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.
    Yeh HY; Cheng SW; Lin YC; Yeh CY; Lin SF; Soo VW
    BMC Med Genomics; 2009 Dec; 2():70. PubMed ID: 20025723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference.
    Ko Y; Kim J; Rodriguez-Zas SL
    Genes Genomics; 2019 May; 41(5):547-555. PubMed ID: 30741379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data.
    Stingo FC; Vannucci M
    Bioinformatics; 2011 Feb; 27(4):495-501. PubMed ID: 21159623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle gene networks are associated with melanoma prognosis.
    Wang L; Hurley DG; Watkins W; Araki H; Tamada Y; Muthukaruppan A; Ranjard L; Derkac E; Imoto S; Miyano S; Crampin EJ; Print CG
    PLoS One; 2012; 7(4):e34247. PubMed ID: 22536322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering biological progression underlying microarray samples.
    Qiu P; Gentles AJ; Plevritis SK
    PLoS Comput Biol; 2011 Apr; 7(4):e1001123. PubMed ID: 21533210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CMRF: analyzing differential gene regulation in two group perturbation experiments.
    Bandyopadhyay N; Somaiya M; Ranka S; Kahveci T
    BMC Genomics; 2012 Apr; 13 Suppl 2(Suppl 2):S2. PubMed ID: 22537297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.
    Yu F; Chen MH; Kuo L; Talbott H; Davis JS
    BMC Bioinformatics; 2015 Aug; 16():245. PubMed ID: 26250443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian mixture model based clustering of replicated microarray data.
    Medvedovic M; Yeung KY; Bumgarner RE
    Bioinformatics; 2004 May; 20(8):1222-32. PubMed ID: 14871871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying differentially expressed genes in meta-analysis via Bayesian model-based clustering.
    Jung YY; Oh MS; Shin DW; Kang SH; Oh HS
    Biom J; 2006 Jun; 48(3):435-50. PubMed ID: 16845907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining transcription factor activity from microarray data using Bayesian Markov chain Monte Carlo sampling.
    Kossenkov AV; Peterson AJ; Ochs MF
    Stud Health Technol Inform; 2007; 129(Pt 2):1250-4. PubMed ID: 17911915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes.
    Datta S; Datta S
    BMC Bioinformatics; 2006 Aug; 7():397. PubMed ID: 16945146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factor analysis for gene regulatory networks and transcription factor activity profiles.
    Pournara I; Wernisch L
    BMC Bioinformatics; 2007 Feb; 8():61. PubMed ID: 17319944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.
    Grzegorczyk M; Husmeier D
    Bioinformatics; 2011 Mar; 27(5):693-9. PubMed ID: 21177328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene regulatory network clustering for graph layout based on microarray gene expression data.
    Kojima K; Imoto S; Nagasaki M; Miyano S
    Genome Inform; 2010; 24():84-95. PubMed ID: 22081591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis.
    Abu-Jamous B; Fa R; Roberts DJ; Nandi AK
    BMC Bioinformatics; 2014 Sep; 15(1):322. PubMed ID: 25267386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of data normalization on fuzzy clustering of DNA microarray data.
    Kim SY; Lee JW; Bae JS
    BMC Bioinformatics; 2006 Mar; 7():134. PubMed ID: 16533412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments.
    Sartor MA; Tomlinson CR; Wesselkamper SC; Sivaganesan S; Leikauf GD; Medvedovic M
    BMC Bioinformatics; 2006 Dec; 7():538. PubMed ID: 17177995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.