BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24758710)

  • 1. Internal nanosecond dynamics in the intrinsically disordered myelin basic protein.
    Stadler AM; Stingaciu L; Radulescu A; Holderer O; Monkenbusch M; Biehl R; Richter D
    J Am Chem Soc; 2014 May; 136(19):6987-94. PubMed ID: 24758710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced Internal Friction by Osmolyte Interaction in Intrinsically Disordered Myelin Basic Protein.
    Stingaciu LR; Biehl R; Changwoo D; Richter D; Stadler AM
    J Phys Chem Lett; 2020 Jan; 11(1):292-296. PubMed ID: 31841337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance of Internal Friction and Structural Constraints for the Dynamics of Denatured Bovine Serum Albumin.
    Ameseder F; Radulescu A; Holderer O; Falus P; Richter D; Stadler AM
    J Phys Chem Lett; 2018 May; 9(10):2469-2473. PubMed ID: 29688725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Dynamics of Ribonuclease A during Thermal Unfolding: The Failure of the Zimm Model.
    Fischer J; Radulescu A; Falus P; Richter D; Biehl R
    J Phys Chem B; 2021 Jan; 125(3):780-788. PubMed ID: 33470118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation of Structural and Dynamical Flexibility of Myelin Basic Protein in Response to Guanidinium Chloride.
    Haris L; Biehl R; Dulle M; Radulescu A; Holderer O; Hoffmann I; Stadler AM
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow internal protein dynamics in solution.
    Biehl R; Richter D
    J Phys Condens Matter; 2014 Dec; 26(50):503103. PubMed ID: 25419898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering.
    Knoll W; Peters J; Kursula P; Gerelli Y; Ollivier J; Demé B; Telling M; Kemner E; Natali F
    Soft Matter; 2014 Jan; 10(3):519-29. PubMed ID: 24651633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-controlled protein dynamics observed with neutron spin echo measurements.
    Wang SC; Mirarefi P; Faraone A; Lee CT
    Biochemistry; 2011 Sep; 50(38):8150-62. PubMed ID: 21809812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations to Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions.
    Cragnell C; Rieloff E; Skepö M
    J Mol Biol; 2018 Aug; 430(16):2478-2492. PubMed ID: 29573987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble modeling of protein disordered states: experimental restraint contributions and validation.
    Marsh JA; Forman-Kay JD
    Proteins; 2012 Feb; 80(2):556-72. PubMed ID: 22095648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myelin basic protein dynamics from out-of-equilibrium functional state to degraded state in myelin.
    Di Gioacchino M; Bianconi A; Burghammer M; Ciasca G; Bruni F; Campi G
    Biochim Biophys Acta Biomembr; 2020 Jun; 1862(6):183256. PubMed ID: 32145283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering.
    Bernadó P; Svergun DI
    Mol Biosyst; 2012 Jan; 8(1):151-67. PubMed ID: 21947276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sampling of protein dynamics in nanosecond time scale by 15N NMR relaxation and self-diffusion measurements.
    Orekhov VY; Korzhnev DM; Pervushin KV; Hoffmann E; Arseniev AS
    J Biomol Struct Dyn; 1999 Aug; 17(1):157-74. PubMed ID: 10496429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small angle x-ray scattering from lipid-bound myelin basic protein in solution.
    Haas H; Oliveira CL; Torriani IL; Polverini E; Fasano A; Carlone G; Cavatorta P; Riccio P
    Biophys J; 2004 Jan; 86(1 Pt 1):455-60. PubMed ID: 14695288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Disordered Proteins under Confinement: Memory Effects and Internal Friction.
    Das A; Makarov DE
    J Phys Chem B; 2018 Oct; 122(39):9049-9060. PubMed ID: 30092636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential Strategies for Revealing Nanoscale Protein Dynamics by Neutron Spin Echo Spectroscopy.
    Callaway DJ; Bu Z
    Methods Enzymol; 2016; 566():253-70. PubMed ID: 26791982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations.
    Nygaard M; Kragelund BB; Papaleo E; Lindorff-Larsen K
    Biophys J; 2017 Aug; 113(3):550-557. PubMed ID: 28793210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of Internal Friction in Disordered Proteins Depends on Solvent Quality.
    Zheng W; Hofmann H; Schuler B; Best RB
    J Phys Chem B; 2018 Dec; 122(49):11478-11487. PubMed ID: 30277791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comment on the Optimal Parameters to Derive Intrinsically Disordered Protein Conformational Ensembles from Small-Angle X-ray Scattering Data Using the Ensemble Optimization Method.
    Sagar A; Jeffries CM; Petoukhov MV; Svergun DI; Bernadó P
    J Chem Theory Comput; 2021 Apr; 17(4):2014-2021. PubMed ID: 33725442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian inference of protein ensembles from SAXS data.
    Antonov LD; Olsson S; Boomsma W; Hamelryck T
    Phys Chem Chem Phys; 2016 Feb; 18(8):5832-8. PubMed ID: 26548662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.