BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24758714)

  • 1. Poly(ethylene glycol) lipid-shelled microbubbles: abundance, stability, and mechanical properties.
    Abou-Saleh RH; Swain M; Evans SD; Thomson NH
    Langmuir; 2014 May; 30(19):5557-63. PubMed ID: 24758714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomechanics of lipid encapsulated microbubbles with functional coatings.
    Abou-Saleh RH; Peyman SA; Critchley K; Evans SD; Thomson NH
    Langmuir; 2013 Mar; 29(12):4096-103. PubMed ID: 23448164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomechanical probing of microbubbles using the atomic force microscope.
    Sboros V; Glynos E; Pye SD; Moran CM; Butler M; Ross JA; McDicken WN; Koutsos V
    Ultrasonics; 2007 Nov; 46(4):349-54. PubMed ID: 17720211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Poly(ethylene glycol) Configuration on Microbubble Pharmacokinetics.
    Navarro-Becerra JA; Castillo JI; Borden MA
    ACS Biomater Sci Eng; 2024 May; 10(5):3331-3342. PubMed ID: 38600786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
    Ferrara KW; Borden MA; Zhang H
    Acc Chem Res; 2009 Jul; 42(7):881-92. PubMed ID: 19552457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery.
    Omata D; Maruyama T; Unga J; Hagiwara F; Munakata L; Kageyama S; Shima T; Suzuki Y; Maruyama K; Suzuki R
    J Control Release; 2019 Oct; 311-312():65-73. PubMed ID: 31461665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compare ultrasound-mediated heating and cavitation between flowing polymer- and lipid-shelled microbubbles during focused ultrasound exposures.
    Zhang S; Zong Y; Wan M; Yu X; Fu Q; Ding T; Zhou F; Wang S
    J Acoust Soc Am; 2012 Jun; 131(6):4845-55. PubMed ID: 22712955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Effects of Glycerol on Lipid Monolayers at the Gas-Liquid Interface: Impact on Microbubble Physical and Mechanical Properties.
    Abou-Saleh RH; McLaughlan JR; Bushby RJ; Johnson BR; Freear S; Evans SD; Thomson NH
    Langmuir; 2019 Aug; 35(31):10097-10105. PubMed ID: 30901226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QCM-D Investigations on Cholesterol-DNA Tethering of Liposomes to Microbubbles for Therapy.
    Armistead FJ; Batchelor DVB; Johnson BRG; Evans SD
    J Phys Chem B; 2023 Mar; 127(11):2466-2474. PubMed ID: 36917458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse effects of flowing phase-shift nanodroplets and lipid-shelled microbubbles on subsequent cavitation during focused ultrasound exposures.
    Zhang S; Cui Z; Xu T; Liu P; Li D; Shang S; Xu R; Zong Y; Niu G; Wang S; He X; Wan M
    Ultrason Sonochem; 2017 Jan; 34():400-409. PubMed ID: 27773262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.
    Borden MA; Pu G; Runner GJ; Longo ML
    Colloids Surf B Biointerfaces; 2004 Jun; 35(3-4):209-23. PubMed ID: 15261034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles.
    Abou-Saleh RH; Armistead FJ; Batchelor DVB; Johnson BRG; Peyman SA; Evans SD
    Rev Sci Instrum; 2021 Jul; 92(7):074105. PubMed ID: 34340422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties.
    Shafi AS; McClements J; Albaijan I; Abou-Saleh RH; Moran C; Koutsos V
    Colloids Surf B Biointerfaces; 2019 Sep; 181():506-515. PubMed ID: 31181433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
    Seo M; Gorelikov I; Williams R; Matsuura N
    Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced characterization and refinement of poly N-butyl cyanoacrylate microbubbles for ultrasound imaging.
    Fokong S; Siepmann M; Liu Z; Schmitz G; Kiessling F; Gätjens J
    Ultrasound Med Biol; 2011 Oct; 37(10):1622-34. PubMed ID: 21924206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prototype 'Infucon' device for continuous infusion of microbubbles in vivo.
    Kauerová Z; Lukáč R; Kohout P; Mašek J; Koudelka Š; Plocková J; Vašíčková M; Vlašín M; Turánek J
    Int J Pharm; 2013 Jan; 441(1-2):92-8. PubMed ID: 23266760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shell effects on acoustic performance of a drug-delivery system activated by ultrasound.
    Jablonowski LJ; Cochran MC; Eisenbrey JR; Teraphongphom NT; Wheatley MA
    J Biomed Mater Res A; 2017 Nov; 105(11):3189-3196. PubMed ID: 28771937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery.
    Li W; Huang Z; MacKay JA; Grube S; Szoka FC
    J Gene Med; 2005 Jan; 7(1):67-79. PubMed ID: 15515149
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.