These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
574 related articles for article (PubMed ID: 24758832)
1. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Park JY; Choi JC; Shim JH; Lee JS; Park H; Kim SW; Doh J; Cho DW Biofabrication; 2014 Sep; 6(3):035004. PubMed ID: 24758832 [TBL] [Abstract][Full Text] [Related]
2. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Mazzocchi A; Devarasetty M; Huntwork R; Soker S; Skardal A Biofabrication; 2018 Oct; 11(1):015003. PubMed ID: 30270846 [TBL] [Abstract][Full Text] [Related]
3. Inorganic-organic hybrid scaffolds for osteochondral regeneration. Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. Law N; Doney B; Glover H; Qin Y; Aman ZM; Sercombe TB; Liew LJ; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Jan; 77():389-399. PubMed ID: 29017117 [TBL] [Abstract][Full Text] [Related]
5. Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting. You F; Chen X; Cooper DML; Chang T; Eames BF Biofabrication; 2018 Dec; 11(1):015015. PubMed ID: 30524110 [TBL] [Abstract][Full Text] [Related]
7. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
8. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering. Zheng L; Jiang X; Chen X; Fan H; Zhang X Biomed Mater; 2014 Oct; 9(6):065004. PubMed ID: 25358331 [TBL] [Abstract][Full Text] [Related]
10. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Bian S; He M; Sui J; Cai H; Sun Y; Liang J; Fan Y; Zhang X Colloids Surf B Biointerfaces; 2016 Apr; 140():392-402. PubMed ID: 26780252 [TBL] [Abstract][Full Text] [Related]
11. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue. Risbud M; Ringe J; Bhonde R; Sittinger M Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119 [TBL] [Abstract][Full Text] [Related]
12. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. Müller M; Becher J; Schnabelrauch M; Zenobi-Wong M Biofabrication; 2015 Aug; 7(3):035006. PubMed ID: 26260872 [TBL] [Abstract][Full Text] [Related]
13. Bioprinting of 3D hydrogels. Stanton MM; Samitier J; Sánchez S Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Liu J; Song H; Zhang L; Xu H; Zhao X Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605 [TBL] [Abstract][Full Text] [Related]
15. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering. Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652 [TBL] [Abstract][Full Text] [Related]
16. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
17. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. Ren X; Wang F; Chen C; Gong X; Yin L; Yang L BMC Musculoskelet Disord; 2016 Jul; 17():301. PubMed ID: 27439428 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of types I and III collagen in tunable hyaluronan hydrogels for vocal fold tissue engineering. Walimbe T; Calve S; Panitch A; Sivasankar MP Acta Biomater; 2019 Mar; 87():97-107. PubMed ID: 30708064 [TBL] [Abstract][Full Text] [Related]
19. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Jin R; Teixeira LS; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J Biomaterials; 2010 Apr; 31(11):3103-13. PubMed ID: 20116847 [TBL] [Abstract][Full Text] [Related]
20. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]