These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24759111)

  • 1. A method for measuring the volume of transdermally extracted interstitial fluid by a three-electrode skin resistance sensor.
    Li D; Wang R; Yu H; Li G; Sun Y; Liang W; Xu K
    Sensors (Basel); 2014 Apr; 14(4):7084-95. PubMed ID: 24759111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of subcutaneous interstitial fluid glucose to estimate blood glucose: revisiting delay and sensor offset.
    Rebrin K; Sheppard NF; Steil GM
    J Diabetes Sci Technol; 2010 Sep; 4(5):1087-98. PubMed ID: 20920428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment and Collection of Dermal Interstitial Fluid Using a Microneedle Patch.
    Kolluru C; Williams M; Chae J; Prausnitz MR
    Adv Healthc Mater; 2019 Feb; 8(3):e1801262. PubMed ID: 30609270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level.
    Xu N; Zhang M; Xu W; Ling G; Yu J; Zhang P
    Analyst; 2022 Mar; 147(7):1478-1491. PubMed ID: 35285841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes.
    Shi T; Li D; Li G; Zhang Y; Xu K; Lu L
    J Diabetes Res; 2016; 2016():4596316. PubMed ID: 27239479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intradermal Lactate Monitoring Based on a Microneedle Sensor Patch for Enhanced In Vivo Accuracy.
    Wang Q; Molinero-Fernandez Á; Wei Q; Xuan X; Konradsson-Geuken Å; Cuartero M; Crespo GA
    ACS Sens; 2024 Jun; 9(6):3115-3125. PubMed ID: 38778463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transdermal extraction of analytes using low-frequency ultrasound.
    Mitragotri S; Coleman M; Kost J; Langer R
    Pharm Res; 2000 Apr; 17(4):466-70. PubMed ID: 10870992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility research of non-invasive methods for interstitial fluid level measurement.
    Pockevicius V; Cepenas M; Miklusis D; Markevicius V; Zabuliene L; Navikas D; Valinevicius A; Andriukaitis D
    Biomed Mater Eng; 2017; 28(6):601-612. PubMed ID: 29171966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of interstitial fluid extraction and glucose detection in one device for wearable non-invasive blood glucose sensors.
    Yao Y; Chen J; Guo Y; Lv T; Chen Z; Li N; Cao S; Chen B; Chen T
    Biosens Bioelectron; 2021 May; 179():113078. PubMed ID: 33607417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles.
    Wang PM; Cornwell M; Prausnitz MR
    Diabetes Technol Ther; 2005 Feb; 7(1):131-41. PubMed ID: 15738711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical characterization of electrochemical biosensor test strips for measurement of glucose in low-volume interstitial fluid samples.
    Collison ME; Stout PJ; Glushko TS; Pokela KN; Mullins-Hirte DJ; Racchini JR; Walter MA; Mecca SP; Rundquist J; Allen JJ; Hilgers ME; Hoegh TB
    Clin Chem; 1999 Sep; 45(9):1665-73. PubMed ID: 10471681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch.
    Kolluru C; Williams M; Yeh JS; Noel RK; Knaack J; Prausnitz MR
    Biomed Microdevices; 2019 Feb; 21(1):14. PubMed ID: 30725230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of interstitial fluid pH on transdermal glucose extraction by reverse iontophoresis.
    Zhu W; Yu H; Pu Z; Guo Z; Zheng H; Li C; Zhang X; Li J; Li D
    Biosens Bioelectron; 2023 Sep; 235():115406. PubMed ID: 37210841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward
    García-Guzmán JJ; Pérez-Ràfols C; Cuartero M; Crespo GA
    ACS Sens; 2021 Mar; 6(3):1129-1137. PubMed ID: 33566575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optofluidic system with volume measurement and surface plasmon resonance sensor for continuous glucose monitoring.
    Li D; Lu B; Zhu R; Yu H; Xu K
    Biomicrofluidics; 2016 Jan; 10(1):011913. PubMed ID: 26958100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial fluid physiology as it relates to glucose monitoring technologies: symposium introduction.
    Wisniewski NA; Klueh U; Stenken J
    J Diabetes Sci Technol; 2011 May; 5(3):579-82. PubMed ID: 21722573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of trueness of a glucose monitor using interstitial fluid and whole blood as specimen matrix.
    Vesper HW; Wang PM; Archibold E; Prausnitz MR; Myers GL
    Diabetes Technol Ther; 2006 Feb; 8(1):76-80. PubMed ID: 16472053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes.
    Zheng M; Wang Z; Chang H; Wang L; Chew SWT; Lio DCS; Cui M; Liu L; Tee BCK; Xu C
    Adv Healthc Mater; 2020 May; 9(10):e1901683. PubMed ID: 32351042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impedance-based polymer microneedle patch sensor for continuous interstitial fluid glucose monitoring.
    Piao H; Choi YH; Kim J; Park D; Lee J; Khang DY; Choi HJ
    Biosens Bioelectron; 2024 Mar; 247():115932. PubMed ID: 38113695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical surface plasmon resonance sensor modified by mutant glucose/galactose-binding protein for affinity detection of glucose molecules.
    Li D; Su J; Yang J; Yu S; Zhang J; Xu K; Yu H
    Biomed Opt Express; 2017 Nov; 8(11):5206-5217. PubMed ID: 29188114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.