These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24759121)

  • 1. Optimization algorithm for rate equations with an application to epitaxial graphene.
    de Boer JP; Ford IJ; Kantorovich L; Vvedensky DD
    J Phys Condens Matter; 2014 May; 26(18):185008. PubMed ID: 24759121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface nucleation and growth in the system of interacting particles.
    Chvoj Z; Chromcová Z
    J Phys Condens Matter; 2012 Apr; 24(13):135003. PubMed ID: 22370096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of bonding and electronic properties of graphene and benzene with iridium adatoms.
    Lazar P; Granatier J; Klimeš J; Hobza P; Otyepka M
    Phys Chem Chem Phys; 2014 Oct; 16(38):20818-27. PubMed ID: 25166887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of wrinkles, strain, and lattice parameter in graphene on iridium.
    Hattab H; N'Diaye AT; Wall D; Klein C; Jnawali G; Coraux J; Busse C; van Gastel R; Poelsema B; Michely T; zu Heringdorf FJ; Horn-von Hoegen M
    Nano Lett; 2012 Feb; 12(2):678-82. PubMed ID: 22175792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth from below: graphene bilayers on Ir(111).
    Nie S; Walter AL; Bartelt NC; Starodub E; Bostwick A; Rotenberg E; McCarty KF
    ACS Nano; 2011 Mar; 5(3):2298-306. PubMed ID: 21322532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure of few-layer epitaxial graphene on Ru(0001).
    Sutter P; Hybertsen MS; Sadowski JT; Sutter E
    Nano Lett; 2009 Jul; 9(7):2654-60. PubMed ID: 19505134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges.
    Grånäs E; Knudsen J; Schröder UA; Gerber T; Busse C; Arman MA; Schulte K; Andersen JN; Michely T
    ACS Nano; 2012 Nov; 6(11):9951-63. PubMed ID: 23039853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene.
    Reatto L; Galli DE; Nava M; Cole MW
    J Phys Condens Matter; 2013 Nov; 25(44):443001. PubMed ID: 24113280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge.
    Gao J; Yip J; Zhao J; Yakobson BI; Ding F
    J Am Chem Soc; 2011 Apr; 133(13):5009-15. PubMed ID: 21384854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous graphene films synthesized at low temperatures by introducing coronene as nucleation seeds.
    Wu T; Ding G; Shen H; Wang H; Sun L; Zhu Y; Jiang D; Xie X
    Nanoscale; 2013 Jun; 5(12):5456-61. PubMed ID: 23666147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity.
    Nethravathi C; Anumol EA; Rajamathi M; Ravishankar N
    Nanoscale; 2011 Feb; 3(2):569-71. PubMed ID: 21069249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst.
    Hwang J; Kim M; Campbell D; Alsalman HA; Kwak JY; Shivaraman S; Woll AR; Singh AK; Hennig RG; Gorantla S; Rümmeli MH; Spencer MG
    ACS Nano; 2013 Jan; 7(1):385-95. PubMed ID: 23244231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between hydrogen flux and carbon monolayer on SiC(0001): graphene formation kinetics.
    Deretzis I; La Magna A
    Nanoscale; 2013 Jan; 5(2):671-80. PubMed ID: 23223677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel growth mechanism of epitaxial graphene on metals.
    Zangwill A; Vvedensky DD
    Nano Lett; 2011 May; 11(5):2092-5. PubMed ID: 21495700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure.
    Mehdipour H; Ostrikov KK
    ACS Nano; 2012 Nov; 6(11):10276-86. PubMed ID: 23083303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice.
    Papagno M; Rusponi S; Sheverdyaeva PM; Vlaic S; Etzkorn M; Pacilé D; Moras P; Carbone C; Brune H
    ACS Nano; 2012 Jan; 6(1):199-204. PubMed ID: 22136502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene as a prototype crystalline membrane.
    Katsnelson MI; Fasolino A
    Acc Chem Res; 2013 Jan; 46(1):97-105. PubMed ID: 23072428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse-engineering of graphene on metal surfaces: a case study of embedded ruthenium.
    Lii-Rosales A; Han Y; Yu KM; Jing D; Anderson N; Vaknin D; Tringides MC; Evans JW; Altman MS; Thiel PA
    Nanotechnology; 2018 Dec; 29(50):505601. PubMed ID: 30222130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics.
    Marsh RE; Riauka TA; McQuarrie SA
    J Pharm Pharm Sci; 2007; 10(2):168-79. PubMed ID: 17706176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.