BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2475943)

  • 1. In vivo functional localization of the human visual cortex using positron emission tomography and magnetic resonance imaging.
    Mora BN; Carman GJ; Allman JM
    Trends Neurosci; 1989 Aug; 12(8):282-4. PubMed ID: 2475943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography.
    Fox PT; Raichle ME
    J Neurophysiol; 1984 May; 51(5):1109-20. PubMed ID: 6610024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral activity during visual stimulation: a positron emission tomography and functional magnetic resonance imaging study.
    Schiefer U; Skalej M; Kolb R; Grodd W; Fahle M; Herzog H
    Ger J Ophthalmol; 1996 Mar; 5(2):109-17. PubMed ID: 8741156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency variation of a pattern-flash visual stimulus during PET differentially activates brain from striate through frontal cortex.
    Mentis MJ; Alexander GE; Grady CL; Horwitz B; Krasuski J; Pietrini P; Strassburger T; Hampel H; Schapiro MB; Rapoport SI
    Neuroimage; 1997 Feb; 5(2):116-28. PubMed ID: 9345542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional magnetic resonance imaging of human visual cortex during face matching: a comparison with positron emission tomography.
    Clark VP; Keil K; Maisog JM; Courtney S; Ungerleider LG; Haxby JV
    Neuroimage; 1996 Aug; 4(1):1-15. PubMed ID: 9345493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Functional magnetic resonance tomography of the visual cortex].
    Brüning R; Danek A
    Radiologe; 1995 Apr; 35(4):256-62. PubMed ID: 7597158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping visual field with positron emission tomography by mathematical modeling of the retinotopic organization in the calcarine cortex.
    Endo S; Toyama H; Kimura Y; Ishii K; Senda M; Kiyosawa M; Uchiyama A
    IEEE Trans Med Imaging; 1997 Jun; 16(3):252-60. PubMed ID: 9184887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of human extrageniculostriate pathways after damage to area V1.
    Ptito M; Johannsen P; Faubert J; Gjedde A
    Neuroimage; 1999 Jan; 9(1):97-107. PubMed ID: 9918731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography.
    Bittar RG; Olivier A; Sadikot AF; Andermann F; Pike GB; Reutens DC
    J Neurosurg; 1999 Dec; 91(6):915-21. PubMed ID: 10584835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography.
    Gulyás B; Roland PE
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1239-43. PubMed ID: 8108394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of functional magnetic resonance imaging with positron emission tomography using a force-related paradigm.
    Dettmers C; Connelly A; Stephan KM; Turner R; Friston KJ; Frackowiak RS; Gadian DG
    Neuroimage; 1996 Dec; 4(3 Pt 1):201-9. PubMed ID: 9345510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging.
    Vogt BA; Derbyshire S; Jones AK
    Eur J Neurosci; 1996 Jul; 8(7):1461-73. PubMed ID: 8758953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.
    Kwong KK; Belliveau JW; Chesler DA; Goldberg IE; Weisskoff RM; Poncelet BP; Kennedy DN; Hoppel BE; Cohen MS; Turner R
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5675-9. PubMed ID: 1608978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex.
    Vafaee MS; Meyer E; Marrett S; Paus T; Evans AC; Gjedde A
    J Cereb Blood Flow Metab; 1999 Mar; 19(3):272-7. PubMed ID: 10078879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional MR mapping of activated cortical areas.
    Brix G; Gückel F; Bellemann ME; Röther J; Schwartz A; Ostertag HJ; Lorenz WJ
    Nuklearmedizin; 1994 Oct; 33(5):200-5. PubMed ID: 7997378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of visual activation of lateral geniculate nucleus by positron emission tomography.
    Mizoguchi S; Suzuki Y; Kiyosawa M; Mochizuki M; Kawasaki T; Ishii K; Senda M
    Graefes Arch Clin Exp Ophthalmol; 2003 Jan; 241(1):8-12. PubMed ID: 12545286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain activation study by use of positron emission tomography in unanesthetized monkeys.
    Takechi H; Onoe H; Imamura K; Onoe K; Kakiuchi T; Nishiyama S; Yoshikawa E; Mori S; Kosugi T; Okada H
    Neurosci Lett; 1994 Dec; 182(2):279-82. PubMed ID: 7715827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technique utilizing positron emission tomography and magnetic resonance/computed tomography image fusion to aid in surgical navigation and tumor volume determination.
    Kraus GE; Bernstein TW; Satter M; Ezzeddine B; Hwang DR; Mantil J
    J Image Guid Surg; 1995; 1(6):300-7. PubMed ID: 9080351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intersubject variability of functional areas in the human visual cortex.
    Hasnain MK; Fox PT; Woldorff MG
    Hum Brain Mapp; 1998; 6(4):301-15. PubMed ID: 9704267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.