These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24759508)

  • 61. Performance evaluation of oil spill software systems in early fate and trajectory of oil spill: comparison analysis of OILMAP and PISCES 2 in Mersin bay spill.
    Toz AC; Buber M
    Environ Monit Assess; 2018 Aug; 190(9):551. PubMed ID: 30143863
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.
    Wang M; Wei W; Ruan Z; He Q; Ge R
    Environ Monit Assess; 2013 Jun; 185(6):4819-34. PubMed ID: 23099859
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of rainfall on oil droplet size and the dispersion of spilled oil with application to Douglas Channel, British Columbia, Canada.
    Wu Y; Hannah CG; Thupaki P; Mo R; Law B
    Mar Pollut Bull; 2017 Jan; 114(1):176-182. PubMed ID: 27609234
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Utilization of a genetic algorithm for the automatic detection of oil spill from RADARSAT-2 SAR satellite data.
    Marghany M
    Mar Pollut Bull; 2014 Dec; 89(1-2):20-29. PubMed ID: 25455367
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Unmanned vehicles for maritime spill response case study: Exercise Cathach.
    Dooly G; Omerdic E; Coleman J; Miller L; Kaknjo A; Hayes J; Braga J; Ferreira F; Conlon H; Barry H; Marcos-Olaya J; Tuohy T; Sousa J; Toal D
    Mar Pollut Bull; 2016 Sep; 110(1):528-538. PubMed ID: 27339741
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Application of HF radar currents to oil spill modelling.
    Abascal AJ; Castanedo S; Medina R; Losada IJ; Alvarez-Fanjul E
    Mar Pollut Bull; 2009 Feb; 58(2):238-48. PubMed ID: 18996546
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.
    Visser F; Buis K; Verschoren V; Meire P
    Sensors (Basel); 2015 Sep; 15(10):25287-312. PubMed ID: 26437410
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Searching for novel modes of toxic actions of oil spill using E. coli live cell array reporter system - A Hebei Spirit oil spill study.
    Jung D; Guan M; Lee S; Kim C; Shin H; Hong S; Yim UH; Shim WJ; Giesy JP; Khim JS; Zhang X; Choi K
    Chemosphere; 2017 Feb; 169():669-677. PubMed ID: 27914352
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Development of a statistical oil spill model for risk assessment.
    Guo W
    Environ Pollut; 2017 Nov; 230():945-953. PubMed ID: 28743093
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Detection of Wakashio oil spill off Mauritius using Sentinel-1 and 2 data: Capability of sensors, image transformation methods and mapping.
    Rajendran S; Vethamony P; Sadooni FN; Al-Kuwari HA; Al-Khayat JA; Seegobin VO; Govil H; Nasir S
    Environ Pollut; 2021 Apr; 274():116618. PubMed ID: 33582596
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors.
    Sun S; Hu C; Feng L; Swayze GA; Holmes J; Graettinger G; MacDonald I; Garcia O; Leifer I
    Mar Pollut Bull; 2016 Feb; 103(1-2):276-285. PubMed ID: 26725867
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Origins and features of oil slicks in the Bohai Sea detected from satellite SAR images.
    Ding Y; Cao C; Huang J; Song Y; Liu G; Wu L; Wan Z
    Mar Pollut Bull; 2016 May; 106(1-2):149-54. PubMed ID: 26988390
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simulation of oil pollution in the Persian Gulf near Assaluyeh oil terminal.
    Faghihifard M; Badri MA
    Mar Pollut Bull; 2016 Apr; 105(1):143-9. PubMed ID: 26906497
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Examining the physical processes of corn oil (medium crude oil surrogate) in sea ice and its resultant effect on complex permittivity and normalized radar cross-section.
    Desmond DS; Neusitzer TD; Firoozy N; Isleifson D; Lemes M; Barber DG; Stern GA
    Mar Pollut Bull; 2019 May; 142():484-493. PubMed ID: 31232328
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Oil spill experiment using airborne DLR ESAR off the coast of Diu, India.
    Sasamal SK; Rao MV
    Mar Pollut Bull; 2015 May; 94(1-2):228-34. PubMed ID: 25813716
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A Sugar-Based Gelator for Marine Oil-Spill Recovery.
    Vibhute AM; Muvvala V; Sureshan KM
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7782-5. PubMed ID: 26821611
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Terrestrial oil spill mapping using satellite earth observation and machine learning: A case study in South Sudan.
    Löw F; Stieglitz K; Diemar O
    J Environ Manage; 2021 Nov; 298():113424. PubMed ID: 34358936
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.
    Allison RS; Johnston JM; Craig G; Jennings S
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548174
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Experimental study of offshore oil thickness hyperspectral inversion based on bio-optical model].
    Xiao JW; Tian QJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):183-7. PubMed ID: 22497155
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria.
    Ozigis MS; Kaduk JD; Jarvis CH
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3621-3635. PubMed ID: 30535661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.