These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 24759526)
21. Phosphorus release mechanisms during digestion of EBPR sludge under anaerobic, anoxic and aerobic conditions. Bi D; Guo X; Chen D Water Sci Technol; 2013; 67(9):1953-9. PubMed ID: 23656937 [TBL] [Abstract][Full Text] [Related]
22. Enhanced nutrient removal in three types of step feeding process from municipal wastewater. Peng Y; Ge S Bioresour Technol; 2011 Jun; 102(11):6405-13. PubMed ID: 21474307 [TBL] [Abstract][Full Text] [Related]
23. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Ng WJ; Ong SL; Hu JY Water Sci Technol; 2001; 43(3):139-46. PubMed ID: 11381897 [TBL] [Abstract][Full Text] [Related]
24. Inhibition and biotransformation potential of veterinary ionophore antibiotics under different redox conditions. Sun P; Huang CH; Pavlostathis SG Environ Sci Technol; 2014 Nov; 48(22):13146-54. PubMed ID: 25340528 [TBL] [Abstract][Full Text] [Related]
25. Microbial transformation of pharmaceuticals naproxen, bisoprolol, and diclofenac in aerobic and anaerobic environments. Lahti M; Oikari A Arch Environ Contam Toxicol; 2011 Aug; 61(2):202-10. PubMed ID: 21082316 [TBL] [Abstract][Full Text] [Related]
26. Biotransformation of 17α-methyltestosterone in sediment under different electron acceptor conditions. Homklin S; Ong SK; Limpiyakorn T Chemosphere; 2011 Mar; 82(10):1401-7. PubMed ID: 21194723 [TBL] [Abstract][Full Text] [Related]
27. Advancing post-anoxic denitrification for biological nutrient removal. Winkler M; Coats ER; Brinkman CK Water Res; 2011 Nov; 45(18):6119-30. PubMed ID: 21937071 [TBL] [Abstract][Full Text] [Related]
28. Simultaneous toxicity and nutrient removals in simulated DEPHANOX (anaerobic/anoxic/oxic sequentials) process treating dinitrotoluene and trichlorotoluene. Sponza DT; Atalay H Water Sci Technol; 2004; 49(5-6):237-44. PubMed ID: 15137429 [TBL] [Abstract][Full Text] [Related]
29. Final report of the amended safety assessment of PEG-5, -10, -16, -25, -30, and -40 soy sterol. Int J Toxicol; 2004; 23 Suppl 2():23-47. PubMed ID: 15513823 [TBL] [Abstract][Full Text] [Related]
30. Sequential Anaerobic-Aerobic Treatment Enhances Sulfamethoxazole Removal: From Batch Cultures to Observations in a Large-Scale Wastewater Treatment Plant. Akay C; Ulrich N; Rocha U; Ding C; Adrian L Environ Sci Technol; 2024 Jul; 58(28):12609-12620. PubMed ID: 38973247 [TBL] [Abstract][Full Text] [Related]
31. Effect of phenol addition on COD and nitrate removal in an anoxic suspension reactor. Bajaj M; Gallert C; Winter J Bioresour Technol; 2010 Jul; 101(14):5159-67. PubMed ID: 20206500 [TBL] [Abstract][Full Text] [Related]
32. Extraction optimization by response surface methodology: Purification and characterization of phytosterol from sugarcane (Saccharum officinarum L.) rind. Feng S; Luo Z; Zhong Z; Jiang L; Tang K J Sep Sci; 2014 Jun; 37(11):1308-14. PubMed ID: 24648272 [TBL] [Abstract][Full Text] [Related]
33. Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions. Liu YS; Ying GG; Shareef A; Kookana RS J Contam Hydrol; 2013 Aug; 151():131-9. PubMed ID: 23777830 [TBL] [Abstract][Full Text] [Related]
34. Production and Biotransformation of Phytosterol Microdispersions to Produce 4-Androstene-3,17-Dione. Mancilla RA; Pavez-Díaz R; Amoroso A Methods Mol Biol; 2017; 1645():159-165. PubMed ID: 28710627 [TBL] [Abstract][Full Text] [Related]
35. The effect of biological sulfate reduction on anaerobic color removal in anaerobic-aerobic sequencing batch reactors. Cirik K; Kitis M; Cinar O Bioprocess Biosyst Eng; 2013 May; 36(5):579-89. PubMed ID: 23277271 [TBL] [Abstract][Full Text] [Related]
36. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Ramos DT; da Silva ML; Chiaranda HS; Alvarez PJ; Corseuil HX Biodegradation; 2013 Jun; 24(3):333-41. PubMed ID: 23054180 [TBL] [Abstract][Full Text] [Related]
37. Removal and fate of estrogens in an anaerobic-anoxic-oxic activated sludge system. Li YM; Zeng QL; Yang SJ Water Sci Technol; 2011; 63(1):51-6. PubMed ID: 21245553 [TBL] [Abstract][Full Text] [Related]
38. An ultra performance liquid chromatographic method for determining phytosterol uptake by Caco-2 cells. Ito N; Ohtsubo T; Kusu F; Hakamata H Anal Biochem; 2012 Feb; 421(1):86-91. PubMed ID: 22119071 [TBL] [Abstract][Full Text] [Related]
39. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions. Gangadharan Puthiya Veetil P; Vijaya Nadaraja A; Bhasi A; Khan S; Bhaskaran K Appl Biochem Biotechnol; 2012 Jul; 167(6):1603-12. PubMed ID: 22328252 [TBL] [Abstract][Full Text] [Related]
40. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Kishida N; Kim J; Tsuneda S; Sudo R Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]