BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24759542)

  • 1. Biogenic gradients in algal density affect the emergent properties of spatially self-organized mussel beds.
    Liu QX; Weerman EJ; Gupta R; Herman PM; Olff H; van de Koppel J
    J R Soc Interface; 2014 Jul; 11(96):20140089. PubMed ID: 24759542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative mechanisms alter the emergent properties of self-organization in mussel beds.
    Liu QX; Weerman EJ; Herman PM; Olff H; van de Koppel J
    Proc Biol Sci; 2012 Jul; 279(1739):2744-53. PubMed ID: 22418256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-dependent feedback and regular spatial patterns in young mussel beds.
    van de Koppel J; Rietkerk M; Dankers N; Herman PM
    Am Nat; 2005 Mar; 165(3):E66-77. PubMed ID: 15729660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems.
    van de Koppel J; Gascoigne JC; Theraulaz G; Rietkerk M; Mooij WM; Herman PM
    Science; 2008 Oct; 322(5902):739-42. PubMed ID: 18974353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems.
    Liu QX; Herman PM; Mooij WM; Huisman J; Scheffer M; Olff H; van de Koppel J
    Nat Commun; 2014 Oct; 5():5234. PubMed ID: 25335554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics.
    Atkinson CL; Vaughn CC; Forshay KJ; Cooper JT
    Ecology; 2013 Jun; 94(6):1359-69. PubMed ID: 23923499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral self-organization underlies the resilience of a coastal ecosystem.
    de Paoli H; van der Heide T; van den Berg A; Silliman BR; Herman PMJ; van de Koppel J
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):8035-8040. PubMed ID: 28696313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stationary Pattern of a Reaction-Diffusion Mussel-Algae Model.
    Shen Z; Wei J
    Bull Math Biol; 2020 Apr; 82(4):51. PubMed ID: 32270309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How does tidal flow affect pattern formation in mussel beds?
    Sherratt JA; Mackenzie JA
    J Theor Biol; 2016 Oct; 406():83-92. PubMed ID: 27343625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass distribution of fishes and mussels mediates spatial and temporal heterogeneity in nutrient cycling in streams.
    Hopper GW; Gido KB; Vaughn CC; Parr TB; Popejoy TG; Atkinson CL; Gates KK
    Oecologia; 2018 Dec; 188(4):1133-1144. PubMed ID: 30343403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions.
    Guichard F; Halpin PM; Allison GW; Lubchenco J; Menge BA
    Am Nat; 2003 Jun; 161(6):889-904. PubMed ID: 12858274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-habitat interactions among bivalve species control community structure on intertidal flats.
    Donadi S; van der Heide T; van der Zee EM; Eklöf JS; van de Koppel J; Weerman EJ; Piersma T; Olff H; Eriksson BK
    Ecology; 2013 Feb; 94(2):489-98. PubMed ID: 23691667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-ecosystem engineering: nutrient fluxes reveal intraspecific and interspecific feedbacks in fragmented mussel beds.
    Largaespada C; Guichard F; Archambault P
    Ecology; 2012 Feb; 93(2):324-33. PubMed ID: 22624314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea otters homogenize mussel beds and reduce habitat provisioning in a rocky intertidal ecosystem.
    Singh GG; Markel RW; Martone RG; Salomon AK; Harley CD; Chan KM
    PLoS One; 2013; 8(5):e65435. PubMed ID: 23717697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density-Dependent and Species-Specific Effects on Self-Organization Modulate the Resistance of Mussel Bed Ecosystems to Hydrodynamic Stress.
    Zardi GI; Nicastro KR; McQuaid CD; de Jager M; van de Koppel J; Seuront L
    Am Nat; 2021 May; 197(5):615-623. PubMed ID: 33908830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison of the "Reduced Losses" and "Increased Production" Models for Mussel Bed Dynamics.
    Sherratt JA; Liu QX; van de Koppel J
    Bull Math Biol; 2021 Aug; 83(10):99. PubMed ID: 34427781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large scale patterns in mussel beds: stripes or spots?
    Bennett JJR; Sherratt JA
    J Math Biol; 2019 Feb; 78(3):815-835. PubMed ID: 30187225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebra mussel filtration and its potential uses in industrial water treatment.
    Elliott P; Aldridge DC; Moggridge GD
    Water Res; 2008 Mar; 42(6-7):1664-74. PubMed ID: 17996272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds.
    Wang RH; Liu QX; Sun GQ; Jin Z; van de Koppel J
    J R Soc Interface; 2009 Aug; 6(37):705-18. PubMed ID: 18986965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase separation explains a new class of self-organized spatial patterns in ecological systems.
    Liu QX; Doelman A; Rottschäfer V; de Jager M; Herman PM; Rietkerk M; van de Koppel J
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11905-10. PubMed ID: 23818579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.