BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24759927)

  • 1. De novo transcriptome and small RNA analyses of two amorphophallus species.
    Diao Y; Yang C; Yan M; Zheng X; Jin S; Wang Y; Hu Z
    PLoS One; 2014; 9(4):e95428. PubMed ID: 24759927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep sequencing of voodoo lily (Amorphophallus konjac): an approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan.
    Gille S; Cheng K; Skinner ME; Liepman AH; Wilkerson CG; Pauly M
    Planta; 2011 Sep; 234(3):515-26. PubMed ID: 21538106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae).
    Zheng X; Pan C; Diao Y; You Y; Yang C; Hu Z
    BMC Genomics; 2013 Jul; 14():490. PubMed ID: 23870214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of buds transcriptome and identification of two florigen gene AkFTs in Amorphophallus konjac.
    Gao H; Zhao Y; Huang L; Huang Y; Chen J; Zhou H; Zhang X
    Sci Rep; 2022 Apr; 12(1):6782. PubMed ID: 35473958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal and spatial regulation of glucomannan deposition and mobilization in corms of Amorphophallus konjac (Araceae).
    Chua M; Hocking TJ; Chan K; Baldwin TC
    Am J Bot; 2013 Feb; 100(2):337-45. PubMed ID: 23347975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chromosome-level genome assembly of
    Gao Y; Zhang Y; Feng C; Chu H; Feng C; Wang H; Wu L; Yin S; Liu C; Chen H; Li Z; Zou Z; Tang L
    Comput Struct Biotechnol J; 2022; 20():1002-1011. PubMed ID: 35242290
    [No Abstract]   [Full Text] [Related]  

  • 8. De novo assembly and characterization of Camelina sativa transcriptome by paired-end sequencing.
    Liang C; Liu X; Yiu SM; Lim BL
    BMC Genomics; 2013 Mar; 14():146. PubMed ID: 23496985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii.
    Qiu Z; Liu F; Lu H; Yuan H; Zhang Q; Huang Y
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27455245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Relationship of resistance to diseases and water-soluble amino acids in Konjac leaves].
    Chen Y; Jiang Q
    Se Pu; 2008 May; 26(3):370-3. PubMed ID: 18724679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First report on DNA content of three species of
    Zhao C; Harijati N; Liu E; Jin S; Diao Y; Hu Z
    J Genet; 2020; 99():. PubMed ID: 32482925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis.
    Xia Z; Xu H; Zhai J; Li D; Luo H; He C; Huang X
    Plant Mol Biol; 2011 Oct; 77(3):299-308. PubMed ID: 21811850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate.
    Liu H; Wu W; Hou K; Chen J; Zhao Z
    Mol Genet Genomics; 2016 Feb; 291(1):337-48. PubMed ID: 26342927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of complete chloroplast genome sequences of four major Amorphophallus species.
    Liu E; Yang C; Liu J; Jin S; Harijati N; Hu Z; Diao Y; Zhao L
    Sci Rep; 2019 Jan; 9(1):809. PubMed ID: 30692573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.
    Torre S; Tattini M; Brunetti C; Fineschi S; Fini A; Ferrini F; Sebastiani F
    PLoS One; 2014; 9(11):e112487. PubMed ID: 25393112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of citric-acid treatment on the physicochemical and gel properties of konjac glucomannan from Amorphophallus bulbifer.
    Su Y; Zhang M; Chang C; Li J; Sun Y; Cai Y; Xiong W; Gu L; Yang Y
    Int J Biol Macromol; 2022 Sep; 216():95-104. PubMed ID: 35793743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq.
    Ni Y; Guo N; Zhao Q; Guo Y
    BMC Genomics; 2016 Apr; 17():314. PubMed ID: 27129471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of Amorphophallus konjac as indicated by its genome.
    Li L; Yang M; Wei W; Zhao J; Yu X; Impaprasert R; Wang J; Liu J; Huang F; Srzednicki G; Yu L
    Sci Rep; 2023 Dec; 13(1):22684. PubMed ID: 38114626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.