These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 24760071)
1. A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit. Manes G; Cheguru P; Majumder A; Bocquet B; Sénéchal A; Artemyev NO; Hamel CP; Brabet P PLoS One; 2014; 9(4):e95768. PubMed ID: 24760071 [TBL] [Abstract][Full Text] [Related]
3. p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness. Szabo V; Kreienkamp HJ; Rosenberg T; Gal A Hum Mutat; 2007 Jul; 28(7):741-2. PubMed ID: 17584859 [TBL] [Abstract][Full Text] [Related]
4. A Novel Heterozygous Missense Mutation in Zeitz C; Méjécase C; Stévenard M; Michiels C; Audo I; Marmor MF Biomed Res Int; 2018; 2018():7694801. PubMed ID: 29850563 [TBL] [Abstract][Full Text] [Related]
5. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness. Vincent A; Audo I; Tavares E; Maynes JT; Tumber A; Wright T; Li S; Michiels C; ; Condroyer C; MacDonald H; Verdet R; Sahel JA; Hamel CP; Zeitz C; Héon E Am J Hum Genet; 2016 May; 98(5):1011-1019. PubMed ID: 27063057 [TBL] [Abstract][Full Text] [Related]
6. Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent. Muradov H; Boyd KK; Artemyev NO J Biol Chem; 2010 Dec; 285(51):39828-34. PubMed ID: 20940301 [TBL] [Abstract][Full Text] [Related]
7. A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness. Kondo M; Das G; Imai R; Santana E; Nakashita T; Imawaka M; Ueda K; Ohtsuka H; Sakai K; Aihara T; Kato K; Sugimoto M; Ueno S; Nishizawa Y; Aguirre GD; Miyadera K PLoS One; 2015; 10(9):e0137072. PubMed ID: 26368928 [TBL] [Abstract][Full Text] [Related]
8. Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Zeitz C; Gross AK; Leifert D; Kloeckener-Gruissem B; McAlear SD; Lemke J; Neidhardt J; Berger W Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):4105-14. PubMed ID: 18487375 [TBL] [Abstract][Full Text] [Related]
9. Mutation in rod PDE6 linked to congenital stationary night blindness impairs the enzyme inhibition by its gamma-subunit. Muradov KG; Granovsky AE; Artemyev NO Biochemistry; 2003 Mar; 42(11):3305-10. PubMed ID: 12641462 [TBL] [Abstract][Full Text] [Related]
10. Riggs-type dominant congenital stationary night blindness: ERG findings, a new GNAT1 mutation and a systemic association. Marmor MF; Zeitz C Doc Ophthalmol; 2018 Aug; 137(1):57-62. PubMed ID: 30051303 [TBL] [Abstract][Full Text] [Related]
11. Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy. Hayashi T; Hosono K; Kurata K; Katagiri S; Mizobuchi K; Ueno S; Kondo M; Nakano T; Hotta Y Doc Ophthalmol; 2020 Apr; 140(2):147-157. PubMed ID: 31583501 [TBL] [Abstract][Full Text] [Related]
12. Structural aspects of rod opsin and their implication in genetic diseases. Fanelli F; Felline A; Marigo V Pflugers Arch; 2021 Sep; 473(9):1339-1359. PubMed ID: 33728518 [TBL] [Abstract][Full Text] [Related]
13. Dark continuous noise from mutant G90D-rhodopsin predominantly underlies congenital stationary night blindness. Chai Z; Ye Y; Silverman D; Rose K; Madura A; Reed RR; Chen J; Yau KW Proc Natl Acad Sci U S A; 2024 May; 121(21):e2404763121. PubMed ID: 38743626 [TBL] [Abstract][Full Text] [Related]
14. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
15. A new mouse model for stationary night blindness with mutant Slc24a1 explains the pathophysiology of the associated human disease. Vinberg F; Wang T; Molday RS; Chen J; Kefalov VJ Hum Mol Genet; 2015 Oct; 24(20):5915-29. PubMed ID: 26246500 [TBL] [Abstract][Full Text] [Related]
16. The N termini of the inhibitory γ-subunits of phosphodiesterase-6 (PDE6) from rod and cone photoreceptors differentially regulate transducin-mediated PDE6 activation. Wang X; Plachetzki DC; Cote RH J Biol Chem; 2019 May; 294(21):8351-8360. PubMed ID: 30962282 [TBL] [Abstract][Full Text] [Related]
17. Transgenic mice carrying the H258N mutation in the gene encoding the beta-subunit of phosphodiesterase-6 (PDE6B) provide a model for human congenital stationary night blindness. Tsang SH; Woodruff ML; Jun L; Mahajan V; Yamashita CK; Pedersen R; Lin CS; Goff SP; Rosenberg T; Larsen M; Farber DB; Nusinowitz S Hum Mutat; 2007 Mar; 28(3):243-54. PubMed ID: 17044014 [TBL] [Abstract][Full Text] [Related]
18. Photoreceptor degeneration in two mouse models for congenital stationary night blindness type 2. Regus-Leidig H; Atorf J; Feigenspan A; Kremers J; Maw MA; Brandstätter JH PLoS One; 2014; 9(1):e86769. PubMed ID: 24466230 [TBL] [Abstract][Full Text] [Related]
19. Molecular genetics of Oguchi disease, fundus albipunctatus, and other forms of stationary night blindness: LVII Edward Jackson Memorial Lecture. Dryja TP Am J Ophthalmol; 2000 Nov; 130(5):547-63. PubMed ID: 11078833 [TBL] [Abstract][Full Text] [Related]
20. A novel p.Gly603Arg mutation in CACNA1F causes Åland island eye disease and incomplete congenital stationary night blindness phenotypes in a family. Vincent A; Wright T; Day MA; Westall CA; Héon E Mol Vis; 2011; 17():3262-70. PubMed ID: 22194652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]