These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24760295)

  • 21. Locating chemical modifications in RNA sequences through ribonucleases and LC-MS based analysis.
    Thakur P; Abernathy S; Limbach PA; Addepalli B
    Methods Enzymol; 2021; 658():1-24. PubMed ID: 34517943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Method for comparative analysis of ribonucleic acids using isotope labeling and mass spectrometry.
    Li S; Limbach PA
    Anal Chem; 2012 Oct; 84(20):8607-13. PubMed ID: 22985222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping of Posttranscriptional tRNA Modifications by Two-Dimensional Gel Electrophoresis Mass Spectrometry.
    Antoine L; Wolff P
    Methods Mol Biol; 2020; 2113():101-110. PubMed ID: 32006310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LC-MS/MS Profiling of Post-Transcriptional Modifications in Ginseng tRNA Purified by a Polysaccharase-Aided Extraction Method.
    Yan T; Hu K; Ren F; Jiang Z
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32316488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full-Range Profiling of tRNA Modifications Using LC-MS/MS at Single-Base Resolution through a Site-Specific Cleavage Strategy.
    Yan TM; Pan Y; Yu ML; Hu K; Cao KY; Jiang ZH
    Anal Chem; 2021 Jan; 93(3):1423-1432. PubMed ID: 33382261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mass spectrometry-based quantification of pseudouridine in RNA.
    Addepalli B; Limbach PA
    J Am Soc Mass Spectrom; 2011 Aug; 22(8):1363-72. PubMed ID: 21953190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and Quantification of (t)RNA Modifications in Pseudomonas aeruginosa by Liquid Chromatography-Tandem Mass Spectrometry.
    Grobe S; Doberenz S; Ferreira K; Krueger J; Brönstrup M; Kaever V; Häussler S
    Chembiochem; 2019 Jun; 20(11):1430-1437. PubMed ID: 30644616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial noncoding Y RNAs are widespread and mimic tRNAs.
    Chen X; Sim S; Wurtmann EJ; Feke A; Wolin SL
    RNA; 2014 Nov; 20(11):1715-24. PubMed ID: 25232022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and Metabolic Fate of 4-Methylthiouridine in Bacterial tRNA.
    Borek C; Reichle VF; Kellner S
    Chembiochem; 2020 Oct; 21(19):2768-2771. PubMed ID: 32394608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of Modified Nucleosides in the Context of NAIL-MS.
    Heiss M; Borland K; Yoluç Y; Kellner S
    Methods Mol Biol; 2021; 2298():279-306. PubMed ID: 34085252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using immobilized enzymes to reduce RNase contamination in RNase mapping of transfer RNAs by mass spectrometry.
    Butterer A; Zorc M; Castleberry CM; Limbach PA
    Anal Bioanal Chem; 2012 Mar; 402(9):2701-11. PubMed ID: 22327965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Matrix-assisted laser desorption/ionization mass spectrometry screening for pseudouridine in mixtures of small RNAs by chemical derivatization, RNase digestion and signature products.
    Durairaj A; Limbach PA
    Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3727-34. PubMed ID: 18973194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment.
    Nechooshtan G; Yunusov D; Chang K; Gingeras TR
    Nucleic Acids Res; 2020 Aug; 48(14):8035-8049. PubMed ID: 32609822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry.
    Patteson KG; Rodicio LP; Limbach PA
    Nucleic Acids Res; 2001 May; 29(10):E49-9. PubMed ID: 11353094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high-throughput quantitative approach reveals more small RNA modifications in mouse liver and their correlation with diabetes.
    Yan M; Wang Y; Hu Y; Feng Y; Dai C; Wu J; Wu D; Zhang F; Zhai Q
    Anal Chem; 2013 Dec; 85(24):12173-81. PubMed ID: 24261999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RoboOligo: software for mass spectrometry data to support manual and de novo sequencing of post-transcriptionally modified ribonucleic acids.
    Sample PJ; Gaston KW; Alfonzo JD; Limbach PA
    Nucleic Acids Res; 2015 May; 43(10):e64. PubMed ID: 25820423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural characterization of modified nucleosides in tRNA hydrolysates by frit-fast atom bombardment liquid chromatography/mass spectrometry.
    Takeda N; Nakamura M; Yoshizumi H; Tatematsu A
    Biol Mass Spectrom; 1994 Aug; 23(8):465-74. PubMed ID: 7522577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel method for sequence placement of modified nucleotides in mixtures of transfer RNA.
    Wagner TM; Nair V; Guymon R; Pomerantz SC; Crain PF; Davis DR; McCloskey JA
    Nucleic Acids Symp Ser (Oxf); 2004; (48):263-4. PubMed ID: 17150579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.
    Addepalli B; Lesner NP; Limbach PA
    RNA; 2015 Oct; 21(10):1746-56. PubMed ID: 26221047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide analysis of the
    Yamagami R; Sieg JP; Assmann SM; Bevilacqua PC
    Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2201237119. PubMed ID: 35696576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.