BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 24760365)

  • 1. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction.
    Park YB; Lee CM; Kafle K; Park S; Cosgrove DJ; Kim SH
    Biomacromolecules; 2014 Jul; 15(7):2718-24. PubMed ID: 24846814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing Mesoscale Polar Order (Unidirectional vs Bidirectional) of Cellulose Microfibrils in Plant Cell Walls Using Sum Frequency Generation Spectroscopy.
    Makarem M; Nishiyama Y; Xin X; Durachko DM; Gu Y; Cosgrove DJ; Kim SH
    J Phys Chem B; 2020 Sep; 124(37):8071-8081. PubMed ID: 32805111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls.
    Huang S; Makarem M; Kiemle SN; Zheng Y; He X; Ye D; Gomez EW; Gomez ED; Cosgrove DJ; Kim SH
    Carbohydr Polym; 2018 Oct; 197():337-348. PubMed ID: 30007621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ.
    Lee CM; Mohamed NM; Watts HD; Kubicki JD; Kim SH
    J Phys Chem B; 2013 Jun; 117(22):6681-92. PubMed ID: 23738844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhomogeneity of Cellulose Microfibril Assembly in Plant Cell Walls Revealed with Sum Frequency Generation Microscopy.
    Huang S; Makarem M; Kiemle SN; Hamedi H; Sau M; Cosgrove DJ; Kim SH
    J Phys Chem B; 2018 May; 122(19):5006-5019. PubMed ID: 29697980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation spectroscopy.
    Park YB; Lee CM; Koo BW; Park S; Cosgrove DJ; Kim SH
    Plant Physiol; 2013 Oct; 163(2):907-13. PubMed ID: 23995148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.
    Lee CM; Gu J; Kafle K; Catchmark J; Kim SH
    Carbohydr Polym; 2015 Nov; 133():270-6. PubMed ID: 26344281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Mechanical Calculations of Vibrational Sum-Frequency-Generation (SFG) Spectra of Cellulose: Dependence of the CH and OH Peak Intensity on the Polarity of Cellulose Chains within the SFG Coherence Domain.
    Lee CM; Chen X; Weiss PA; Jensen L; Kim SH
    J Phys Chem Lett; 2017 Jan; 8(1):55-60. PubMed ID: 27936745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Simulation of Vibrational Sum Frequency Generation Intensity for Non-Centrosymmetric Domains Interspersed in an Amorphous Matrix: A Case Study for Cellulose in Plant Cell Wall.
    Choi J; Lee J; Makarem M; Huang S; Kim SH
    J Phys Chem B; 2022 Sep; 126(35):6629-6641. PubMed ID: 36037433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.
    Lee CM; Kubicki JD; Fan B; Zhong L; Jarvis MC; Kim SH
    J Phys Chem B; 2015 Dec; 119(49):15138-49. PubMed ID: 26615832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling.
    Funahashi R; Okita Y; Hondo H; Zhao M; Saito T; Isogai A
    Biomacromolecules; 2017 Nov; 18(11):3687-3694. PubMed ID: 28954511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process.
    Gea S; Reynolds CT; Roohpour N; Wirjosentono B; Soykeabkaew N; Bilotti E; Peijs T
    Bioresour Technol; 2011 Oct; 102(19):9105-10. PubMed ID: 21835613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific directionality of cellulose synthase complex movement inferred from cellulose microfibril polarity in secondary cell walls of Arabidopsis.
    Choi J; Makarem M; Lee C; Lee J; Kiemle S; Cosgrove DJ; Kim SH
    Sci Rep; 2023 Dec; 13(1):22007. PubMed ID: 38086837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.
    Barnette AL; Bradley LC; Veres BD; Schreiner EP; Park YB; Park J; Park S; Kim SH
    Biomacromolecules; 2011 Jul; 12(7):2434-9. PubMed ID: 21615075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens.
    Cho SH; Du J; Sines I; Poosarla VG; Vepachedu V; Kafle K; Park YB; Kim SH; Kumar M; Nixon BT
    Biochem J; 2015 Sep; 470(2):195-205. PubMed ID: 26348908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
    Wang T; Yang H; Kubicki JD; Hong M
    Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites.
    de Souza CF; Lucyszyn N; Woehl MA; Riegel-Vidotti IC; Borsali R; Sierakowski MR
    Carbohydr Polym; 2013 Mar; 93(1):144-53. PubMed ID: 23465913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.
    Iwamoto S; Kai W; Isogai A; Iwata T
    Biomacromolecules; 2009 Sep; 10(9):2571-6. PubMed ID: 19645441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.