These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24760776)

  • 1. Prediction of IgG1 aggregation in solution.
    Ojala F; Degerman M; Hansen TB; Broberg Hansen E; Nilsson B
    Biotechnol J; 2014 Jun; 9(6):800-4. PubMed ID: 24760776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of reversible IgG1 aggregation occurring in a size exclusion chromatography column is enabled through a model based approach.
    Ojala F; Sellberg A; Hansen TB; Hansen EB; Nilsson B
    Biotechnol J; 2015 Sep; 10(11):1814-21. PubMed ID: 26212800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cosolutes in the aggregation kinetics of monoclonal antibodies.
    Nicoud L; Sozo M; Arosio P; Yates A; Norrant E; Morbidelli M
    J Phys Chem B; 2014 Oct; 118(41):11921-30. PubMed ID: 25243487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies.
    Nicoud L; Arosio P; Sozo M; Yates A; Norrant E; Morbidelli M
    J Phys Chem B; 2014 Sep; 118(36):10595-606. PubMed ID: 25119992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions.
    Nicoud L; Jagielski J; Pfister D; Lazzari S; Massant J; Lattuada M; Morbidelli M
    J Phys Chem B; 2016 Apr; 120(13):3267-80. PubMed ID: 27007829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain.
    McAuley A; Jacob J; Kolvenbach CG; Westland K; Lee HJ; Brych SR; Rehder D; Kleemann GR; Brems DN; Matsumura M
    Protein Sci; 2008 Jan; 17(1):95-106. PubMed ID: 18156469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions.
    Yageta S; Lauer TM; Trout BL; Honda S
    Mol Pharm; 2015 May; 12(5):1443-55. PubMed ID: 25871775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a dual-wavelength size exclusion HPLC method with improved sensitivity to detect protein aggregates and its use to better characterize degradation pathways of an IgG1 monoclonal antibody.
    Bond MD; Panek ME; Zhang Z; Wang D; Mehndiratta P; Zhao H; Gunton K; Ni A; Nedved ML; Burman S; Volkin DB
    J Pharm Sci; 2010 Jun; 99(6):2582-97. PubMed ID: 20039394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular interactions and conformation of antibody dimers present in IgG1 biopharmaceuticals.
    Iwura T; Fukuda J; Yamazaki K; Kanamaru S; Arisaka F
    J Biochem; 2014 Jan; 155(1):63-71. PubMed ID: 24155259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine as an eluent for automated on-line Protein A/size exclusion chromatographic analysis of monoclonal antibody aggregates in cell culture.
    Wang S; Raghani A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():115-20. PubMed ID: 24333642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration.
    Zidar M; Šušterič A; Ravnik M; Kuzman D
    Pharm Res; 2017 Sep; 34(9):1831-1839. PubMed ID: 28593474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient molten globules and metastable aggregates induced by brief exposure of a monoclonal IgG to low pH.
    Filipe V; Kükrer B; Hawe A; Jiskoot W
    J Pharm Sci; 2012 Jul; 101(7):2327-39. PubMed ID: 22517069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
    Hari SB; Lau H; Razinkov VI; Chen S; Latypov RF
    Biochemistry; 2010 Nov; 49(43):9328-38. PubMed ID: 20843079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates.
    Arosio P; Rima S; Morbidelli M
    Pharm Res; 2013 Mar; 30(3):641-54. PubMed ID: 23054090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold.
    Mazzer AR; Perraud X; Halley J; O'Hara J; Bracewell DG
    J Chromatogr A; 2015 Oct; 1415():83-90. PubMed ID: 26346187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a non-Arrhenius model for therapeutic monoclonal antibody aggregation.
    Kayser V; Chennamsetty N; Voynov V; Helk B; Forrer K; Trout BL
    J Pharm Sci; 2011 Jul; 100(7):2526-42. PubMed ID: 21268027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation Kinetics for IgG1-Based Monoclonal Antibody Therapeutics.
    Singla A; Bansal R; Joshi V; Rathore AS
    AAPS J; 2016 May; 18(3):689-702. PubMed ID: 26902302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidation of two major aggregation pathways in an IgG2 antibody.
    Van Buren N; Rehder D; Gadgil H; Matsumura M; Jacob J
    J Pharm Sci; 2009 Sep; 98(9):3013-30. PubMed ID: 18680168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.