These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24760788)

  • 1. Stance width changes how sensory feedback is used for multisegmental balance control.
    Goodworth AD; Mellodge P; Peterka RJ
    J Neurophysiol; 2014 Aug; 112(3):525-42. PubMed ID: 24760788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensorimotor integration for multisegmental frontal plane balance control in humans.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2012 Jan; 107(1):12-28. PubMed ID: 21940611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of stance width on frontal plane postural dynamics and coordination in human balance control.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2010 Aug; 104(2):1103-18. PubMed ID: 20427616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity dependence of sensory reweighting in human balance control.
    Missen KJ; Carpenter MG; Assländer L
    J Neurophysiol; 2024 Aug; 132(2):454-460. PubMed ID: 38958285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation between individuals in sensorimotor feedback control of standing balance.
    Goodworth A; Felmlee D; Karmali F
    J Neurophysiol; 2023 Aug; 130(2):303-318. PubMed ID: 37380599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorimotor integration in human postural control.
    Peterka RJ
    J Neurophysiol; 2002 Sep; 88(3):1097-118. PubMed ID: 12205132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory Reweighting System Differences on Vestibular Feedback With Increased Task Constraints in Individuals With and Without Chronic Ankle Instability.
    Sugimoto YA; McKeon PO; Rhea CK; Schmitz RJ; Henson R; Mattacola CG; Ross SE
    J Athl Train; 2024 Jul; 59(7):713-723. PubMed ID: 37459393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory reweighting dynamics in human postural control.
    Assländer L; Peterka RJ
    J Neurophysiol; 2014 May; 111(9):1852-64. PubMed ID: 24501263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of sensorimotor integration to spinal stabilization in humans.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2009 Jul; 102(1):496-512. PubMed ID: 19403751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control.
    Bingham JT; Choi JT; Ting LH
    J Neurophysiol; 2011 Jul; 106(1):437-48. PubMed ID: 21543754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues.
    Assländer L; Peterka RJ
    J Neurophysiol; 2016 Aug; 116(2):272-85. PubMed ID: 27075544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human stance control beyond steady state response and inverted pendulum simplification.
    Schweigart G; Mergner T
    Exp Brain Res; 2008 Mar; 185(4):635-53. PubMed ID: 18030458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of vision elimination during quiet stance tasks with different feet positions.
    Sarabon N; Rosker J; Loefler S; Kern H
    Gait Posture; 2013 Sep; 38(4):708-11. PubMed ID: 23566634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for beta corticomuscular coherence during human standing balance: Effects of stance width, vision, and support surface.
    Jacobs JV; Wu G; Kelly KM
    Neuroscience; 2015 Jul; 298():1-11. PubMed ID: 25869620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory integration for human balance control.
    Peterka RJ
    Handb Clin Neurol; 2018; 159():27-42. PubMed ID: 30482320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory organization of balance responses in children 3-6 years of age: a normative study with diagnostic implications.
    Foudriat BA; Di Fabio RP; Anderson JH
    Int J Pediatr Otorhinolaryngol; 1993 Oct; 27(3):255-71. PubMed ID: 8270364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus-dependent changes in the vestibular contribution to human postural control.
    Cenciarini M; Peterka RJ
    J Neurophysiol; 2006 May; 95(5):2733-50. PubMed ID: 16467429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway.
    Day BL; Steiger MJ; Thompson PD; Marsden CD
    J Physiol; 1993 Sep; 469():479-99. PubMed ID: 8271209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in sensory reweighting due to loss of visual and proprioceptive cues in postural stability support among sleep-deprived cadet pilots.
    Cheng S; Ma J; Sun J; Wang J; Xiao X; Wang Y; Hu W
    Gait Posture; 2018 Jun; 63():97-103. PubMed ID: 29727778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of bilateral vestibular loss on spinal stabilization in humans.
    Goodworth AD; Peterka RJ
    J Neurophysiol; 2010 Apr; 103(4):1978-87. PubMed ID: 20147413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.