These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24760818)

  • 1. Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping.
    Klukas C; Chen D; Pape JM
    Plant Physiol; 2014 Jun; 165(2):506-518. PubMed ID: 24760818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping.
    Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T
    Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of high-throughput plant image data with the information system IAP.
    Klukas C; Pape JM; Entzian A
    J Integr Bioinform; 2012 Jun; 9(2):191. PubMed ID: 22745177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
    Knecht AC; Campbell MT; Caprez A; Swanson DR; Walia H
    J Exp Bot; 2016 May; 67(11):3587-99. PubMed ID: 27141917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings.
    Lee JH; Lee U; Yoo JH; Lee TS; Jung JH; Kim HS
    Plant Methods; 2024 Mar; 20(1):44. PubMed ID: 38493119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TIPS: a system for automated image-based phenotyping of maize tassels.
    Gage JL; Miller ND; Spalding EP; Kaeppler SM; de Leon N
    Plant Methods; 2017; 13():21. PubMed ID: 28373892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
    Hartmann A; Czauderna T; Hoffmann R; Stein N; Schreiber F
    BMC Bioinformatics; 2011 May; 12():148. PubMed ID: 21569390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction.
    Wu S; Wen W; Wang Y; Fan J; Wang C; Gou W; Guo X
    Plant Phenomics; 2020; 2020():1848437. PubMed ID: 33313542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.
    Naik HS; Zhang J; Lofquist A; Assefa T; Sarkar S; Ackerman D; Singh A; Singh AK; Ganapathysubramanian B
    Plant Methods; 2017; 13():23. PubMed ID: 28405214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping.
    Pound MP; Fozard S; Torres Torres M; Forde BG; French AP
    Plant Methods; 2017; 13():12. PubMed ID: 28286542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot).
    Narisetti N; Henke M; Neumann K; Stolzenburg F; Altmann T; Gladilin E
    Front Plant Sci; 2022; 13():906410. PubMed ID: 35909752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics.
    Kienbaum L; Correa Abondano M; Blas R; Schmid K
    Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging Image Analysis for High-Throughput Plant Phenotyping.
    Das Choudhury S; Samal A; Awada T
    Front Plant Sci; 2019; 10():508. PubMed ID: 31068958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micron-scale Phenotyping Techniques of Maize Vascular Bundles Based on X-ray Microcomputed Tomography.
    Zhang Y; Ma L; Pan X; Wang J; Guo X; Du J
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30371675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management.
    Reynolds D; Ball J; Bauer A; Davey R; Griffiths S; Zhou J
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30715329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (
    Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A
    Plant Methods; 2020; 16():87. PubMed ID: 32549903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image-Based High-Throughput Detection and Phenotype Evaluation Method for Multiple Lettuce Varieties.
    Du J; Lu X; Fan J; Qin Y; Yang X; Guo X
    Front Plant Sci; 2020; 11():563386. PubMed ID: 33123178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.
    Clark RT; Famoso AN; Zhao K; Shaff JE; Craft EJ; Bustamante CD; McCouch SR; Aneshansley DJ; Kochian LV
    Plant Cell Environ; 2013 Feb; 36(2):454-66. PubMed ID: 22860896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses.
    Xiang L; Nolan TM; Bao Y; Elmore M; Tuel T; Gai J; Shah D; Wang P; Huser NM; Hurd AM; McLaughlin SA; Howell SH; Walley JW; Yin Y; Tang L
    Plant J; 2021 Sep; 107(6):1837-1853. PubMed ID: 34216161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.