These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 24760818)
21. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis. Lee U; Chang S; Putra GA; Kim H; Kim DH PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690 [TBL] [Abstract][Full Text] [Related]
22. Multi-Source Data Fusion Improves Time-Series Phenotype Accuracy in Maize under a Field High-Throughput Phenotyping Platform. Li Y; Wen W; Fan J; Gou W; Gu S; Lu X; Yu Z; Wang X; Guo X Plant Phenomics; 2023; 5():0043. PubMed ID: 37223316 [TBL] [Abstract][Full Text] [Related]
23. PhenoApp: A mobile tool for plant phenotyping to record field and greenhouse observations. Röckel F; Schreiber T; Schüler D; Braun U; Krukenberg I; Schwander F; Peil A; Brandt C; Willner E; Gransow D; Scholz U; Kecke S; Maul E; Lange M; Töpfer R F1000Res; 2022; 11():12. PubMed ID: 36636476 [TBL] [Abstract][Full Text] [Related]
24. Earbox, an open tool for high-throughput measurement of the spatial organization of maize ears and inference of novel traits. Oury V; Leroux T; Turc O; Chapuis R; Palaffre C; Tardieu F; Prado SA; Welcker C; Lacube S Plant Methods; 2022 Jul; 18(1):96. PubMed ID: 35902871 [TBL] [Abstract][Full Text] [Related]
25. PhenoTrack3D: an automatic high-throughput phenotyping pipeline to track maize organs over time. Daviet B; Fernandez R; Cabrera-Bosquet L; Pradal C; Fournier C Plant Methods; 2022 Dec; 18(1):130. PubMed ID: 36482291 [TBL] [Abstract][Full Text] [Related]
26. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images. Miller ND; Haase NJ; Lee J; Kaeppler SM; de Leon N; Spalding EP Plant J; 2017 Jan; 89(1):169-178. PubMed ID: 27585732 [TBL] [Abstract][Full Text] [Related]
27. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Wang W; Guo W; Le L; Yu J; Wu Y; Li D; Wang Y; Wang H; Lu X; Qiao H; Gu X; Tian J; Zhang C; Pu L Mol Plant; 2023 Feb; 16(2):354-373. PubMed ID: 36447436 [TBL] [Abstract][Full Text] [Related]
28. Holistic and component plant phenotyping using temporal image sequence. Das Choudhury S; Bashyam S; Qiu Y; Samal A; Awada T Plant Methods; 2018; 14():35. PubMed ID: 29760766 [TBL] [Abstract][Full Text] [Related]
29. A Straightforward High-Throughput Aboveground Phenotyping Platform for Small- to Medium-Sized Plants. Caldwell D; Iyer-Pascuzzi AS Methods Mol Biol; 2022; 2539():37-48. PubMed ID: 35895194 [TBL] [Abstract][Full Text] [Related]
30. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Zhang Y; Wang J; Du J; Zhao Y; Lu X; Wen W; Gu S; Fan J; Wang C; Wu S; Wang Y; Liao S; Zhao C; Guo X Plant Biotechnol J; 2021 Jan; 19(1):35-50. PubMed ID: 32569428 [TBL] [Abstract][Full Text] [Related]
31. An automated field phenotyping pipeline for application in grapevine research. Kicherer A; Herzog K; Pflanz M; Wieland M; Rüger P; Kecke S; Kuhlmann H; Töpfer R Sensors (Basel); 2015 Feb; 15(3):4823-36. PubMed ID: 25730485 [TBL] [Abstract][Full Text] [Related]
32. Recent developments and potential of robotics in plant eco-phenotyping. Yao L; van de Zedde R; Kowalchuk G Emerg Top Life Sci; 2021 May; 5(2):289-300. PubMed ID: 34013965 [TBL] [Abstract][Full Text] [Related]
33. High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum. Gomez FE; Carvalho G; Shi F; Muliana AH; Rooney WL Plant Methods; 2018; 14():59. PubMed ID: 30008795 [TBL] [Abstract][Full Text] [Related]
34. Digital whole-community phenotyping: tracking morphological and physiological responses of plant communities to environmental changes in the field. Zieschank V; Junker RR Front Plant Sci; 2023; 14():1141554. PubMed ID: 37229120 [TBL] [Abstract][Full Text] [Related]
35. Quantitative phenotyping and evaluation for lettuce leaves of multiple semantic components. Du J; Li B; Lu X; Yang X; Guo X; Zhao C Plant Methods; 2022 Apr; 18(1):54. PubMed ID: 35468831 [TBL] [Abstract][Full Text] [Related]
36. Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. Liang Z; Pandey P; Stoerger V; Xu Y; Qiu Y; Ge Y; Schnable JC Gigascience; 2018 Feb; 7(2):1-11. PubMed ID: 29186425 [TBL] [Abstract][Full Text] [Related]
37. A miniaturized phenotyping platform for individual plants using multi-view stereo 3D reconstruction. Wu S; Wen W; Gou W; Lu X; Zhang W; Zheng C; Xiang Z; Chen L; Guo X Front Plant Sci; 2022; 13():897746. PubMed ID: 36003825 [TBL] [Abstract][Full Text] [Related]
38. Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Junker A; Muraya MM; Weigelt-Fischer K; Arana-Ceballos F; Klukas C; Melchinger AE; Meyer RC; Riewe D; Altmann T Front Plant Sci; 2014; 5():770. PubMed ID: 25653655 [TBL] [Abstract][Full Text] [Related]
39. Field-based individual plant phenotyping of herbaceous species by unmanned aerial vehicle. Guo W; Fukano Y; Noshita K; Ninomiya S Ecol Evol; 2020 Nov; 10(21):12318-12326. PubMed ID: 33209290 [TBL] [Abstract][Full Text] [Related]
40. Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. Wen T; Li JH; Wang Q; Gao YY; Hao GF; Song BA Sci Total Environ; 2023 Nov; 899():165626. PubMed ID: 37481085 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]