These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24760826)

  • 21. Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining.
    Schimmel J; van Schendel R; den Dunnen JT; Tijsterman M
    Trends Genet; 2019 Sep; 35(9):632-644. PubMed ID: 31296341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromosomal breaks at the origin of small tandem DNA duplications.
    Schimmel J; van Wezel MD; van Schendel R; Tijsterman M
    Bioessays; 2023 Jan; 45(1):e2200168. PubMed ID: 36385254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frameshift mutagenesis: the roles of primer-template misalignment and the nonhomologous end-joining pathway in Saccharomyces cerevisiae.
    Lehner K; Mudrak SV; Minesinger BK; Jinks-Robertson S
    Genetics; 2012 Feb; 190(2):501-10. PubMed ID: 22095081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double-strand break repair-associated intragenic deletions and tandem duplications suggest the architecture of the repair replication fork.
    Dalin S; Webster S; Sugawara N; Zhang S; Wu Q; Cui T; Liang V; Beroukhim R; Haber JE
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental Stress Induces Trinucleotide Repeat Mutagenesis in Human Cells by Alt-Nonhomologous End Joining Repair.
    Chatterjee N; Lin Y; Yotnda P; Wilson JH
    J Mol Biol; 2016 Jul; 428(15):2978-80. PubMed ID: 27318194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 53BP1 Protects against CtIP-Dependent Capture of Ectopic Chromosomal Sequences at the Junction of Distant Double-Strand Breaks.
    Guirouilh-Barbat J; Gelot C; Xie A; Dardillac E; Scully R; Lopez BS
    PLoS Genet; 2016 Oct; 12(10):e1006230. PubMed ID: 27798638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Species-specific double-strand break repair and genome evolution in plants.
    Kirik A; Salomon S; Puchta H
    EMBO J; 2000 Oct; 19(20):5562-6. PubMed ID: 11032823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevalence of Mutation-Prone Microhomology-Mediated End Joining in a Chordate Lacking the c-NHEJ DNA Repair Pathway.
    Deng W; Henriet S; Chourrout D
    Curr Biol; 2018 Oct; 28(20):3337-3341.e4. PubMed ID: 30293719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis.
    Davila JI; Arrieta-Montiel MP; Wamboldt Y; Cao J; Hagmann J; Shedge V; Xu YZ; Weigel D; Mackenzie SA
    BMC Biol; 2011 Sep; 9():64. PubMed ID: 21951689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens.
    Huang J; Cook DE
    FEMS Microbiol Rev; 2022 Nov; 46(6):. PubMed ID: 35810003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved.
    Guo X; Ruan S; Hu W; Cai D; Fan L
    Funct Integr Genomics; 2008 May; 8(2):101-8. PubMed ID: 17994302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of tandem duplication formation in BRCA1-mutant cells.
    Willis NA; Frock RL; Menghi F; Duffey EE; Panday A; Camacho V; Hasty EP; Liu ET; Alt FW; Scully R
    Nature; 2017 Nov; 551(7682):590-595. PubMed ID: 29168504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining.
    Hu Q; Tang D; Wang H; Shen Y; Chen X; Ji J; Du G; Li Y; Cheng Z
    Plant Physiol; 2016 Oct; 172(2):1105-1116. PubMed ID: 27512017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and Arabidopsis.
    Lloyd AH; Wang D; Timmis JN
    PLoS One; 2012; 7(2):e32255. PubMed ID: 22389691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The impact and origin of copy number variations in the Oryza species.
    Bai Z; Chen J; Liao Y; Wang M; Liu R; Ge S; Wing RA; Chen M
    BMC Genomics; 2016 Mar; 17():261. PubMed ID: 27025496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage.
    Chen JM; Chuzhanova N; Stenson PD; FĂ©rec C; Cooper DN
    Hum Mutat; 2005 Feb; 25(2):207-21. PubMed ID: 15643617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae.
    Moore JK; Haber JE
    Mol Cell Biol; 1996 May; 16(5):2164-73. PubMed ID: 8628283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.