These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 24760897)

  • 1. A novel use of transfer function estimation for early assessment of brain injury outcome.
    Svenkeson D; Sena B; Oishi M; Pappu S; Yonas H
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2413-21. PubMed ID: 24760897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of non-invasive and invasive arterial blood pressure measurement for assessment of dynamic cerebral autoregulation.
    Petersen NH; Ortega-Gutierrez S; Reccius A; Masurkar A; Huang A; Marshall RS
    Neurocrit Care; 2014 Feb; 20(1):60-8. PubMed ID: 24452959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity.
    Jaeger M; Schuhmann MU; Soehle M; Meixensberger J
    Crit Care Med; 2006 Jun; 34(6):1783-8. PubMed ID: 16625135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma.
    Hinzman JM; Andaluz N; Shutter LA; Okonkwo DO; Pahl C; Strong AJ; Dreier JP; Hartings JA
    Brain; 2014 Nov; 137(Pt 11):2960-72. PubMed ID: 25154387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet phase synchronization analysis of cerebral blood flow autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):960-8. PubMed ID: 20142164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.
    Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB
    Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy.
    Wong FY; Leung TS; Austin T; Wilkinson M; Meek JH; Wyatt JS; Walker AM
    Pediatrics; 2008 Mar; 121(3):e604-11. PubMed ID: 18250118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI).
    Lewis PM; Rosenfeld JV; Diehl RR; Mehdorn HM; Lang EW
    Acta Neurochir (Wien); 2008 Feb; 150(2):139-46; discussion 146-7. PubMed ID: 18213440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The first experience in monitoring the cerebral vascular autoregulation in the acute period of severe brain injury].
    Oshorov AV; Savin IA; Goriachev AS; Popugaev KA; Potapov AA; Gavrilov AG
    Anesteziol Reanimatol; 2008; (2):61-4. PubMed ID: 18540464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of the autoregulation index decreases after removing the effect of the very low frequency band.
    Elting JW; Maurits NM; Aries MJ
    Med Eng Phys; 2014 May; 36(5):601-6. PubMed ID: 24238618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of sevoflurane on dynamic cerebral blood flow autoregulation assessed by spectral and transfer function analysis.
    Ogawa Y; Iwasaki K; Shibata S; Kato J; Ogawa S; Oi Y
    Anesth Analg; 2006 Feb; 102(2):552-9. PubMed ID: 16428560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of controlled breathing patterns on cerebrovascular autoregulation and cardiac baroreceptor sensitivity.
    Eames PJ; Potter JF; Panerai RB
    Clin Sci (Lond); 2004 Feb; 106(2):155-62. PubMed ID: 14521507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiologic monitoring of patients with head injuries.
    Robertson CS; Simpson RK
    Neurosurg Clin N Am; 1991 Apr; 2(2):285-99. PubMed ID: 1821742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human cerebral autoregulation before, during and after spaceflight.
    Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG
    J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified flow- and oxygen-related autoregulation indices for continuous monitoring of cerebral autoregulation.
    Hecht N; Fiss I; Wolf S; Barth M; Vajkoczy P; Woitzik J
    J Neurosci Methods; 2011 Oct; 201(2):399-403. PubMed ID: 21871492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury.
    Figaji AA; Zwane E; Fieggen AG; Argent AC; Le Roux PD; Siesjo P; Peter JC
    J Neurosurg Pediatr; 2009 Nov; 4(5):420-8. PubMed ID: 19877773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Neuromonitoring and prognosis after severe brain injury: beyond cerebral perfusion pressure alone].
    Bordes J; Montcriol A; Asencio Y; Boret H
    Ann Fr Anesth Reanim; 2011 Jan; 30(1):91. PubMed ID: 21186094
    [No Abstract]   [Full Text] [Related]  

  • 18. Cerebral perfusion pressure.
    Smith M
    Br J Anaesth; 2015 Oct; 115(4):488-90. PubMed ID: 26188341
    [No Abstract]   [Full Text] [Related]  

  • 19. "False" autoregulation of cerebral blood flow in patients with acute severe head injury.
    Enevoldsen EM; Jensen FT
    Acta Neurol Scand Suppl; 1977; 64():514-5. PubMed ID: 268894
    [No Abstract]   [Full Text] [Related]  

  • 20. Thermal method for continuous measurement of cerebral perfusion.
    Wei D; Saidel GM; Jones SC
    Med Biol Eng Comput; 1994 Sep; 32(5):481-8. PubMed ID: 7845063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.