BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24760902)

  • 1. Maximum likelihood Doppler frequency estimation under decorrelation noise for quantifying flow in optical coherence tomography.
    Chan AC; Srinivasan VJ; Lam EY
    IEEE Trans Med Imaging; 2014 Jun; 33(6):1313-23. PubMed ID: 24760902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Kasai autocorrelation and maximum likelihood estimators for Doppler optical coherence tomography.
    Chan AC; Lam EY; Srinivasan VJ
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1033-42. PubMed ID: 23446044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography.
    Bouwens A; Szlag D; Szkulmowski M; Bolmont T; Wojtkowski M; Lasser T
    Opt Express; 2013 Jul; 21(15):17711-29. PubMed ID: 23938644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity.
    Xu T; Bashford G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum likelihood blood velocity estimator incorporating properties of flow physics.
    Schlaikjer M; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):80-92. PubMed ID: 14995019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation of joint spectral and time domain optical coherence tomography (jSTdOCT) and phase-resolved Doppler OCT.
    Walther J; Koch E
    Opt Express; 2014 Sep; 22(19):23129-46. PubMed ID: 25321783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.
    Schaefer AW; Reynolds JJ; Marks DL; Boppart SA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):186-90. PubMed ID: 14723509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A digital frequency ramping method for enhancing Doppler flow imaging in Fourier-domain optical coherence tomography.
    Yuan Z; Luo ZC; Ren HG; Du CW; Pan Y
    Opt Express; 2009 Mar; 17(5):3951-63. PubMed ID: 19259236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator.
    Morofke D; Kolios MC; Vitkin IA; Yang VX
    Opt Lett; 2007 Feb; 32(3):253-5. PubMed ID: 17215936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral blood flow velocity estimation based on ultrasound speckle size change with scan velocity.
    Xu T; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2695-703. PubMed ID: 21156365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography.
    Uribe-Patarroyo N; Villiger M; Bouma BE
    Opt Express; 2014 Oct; 22(20):24411-29. PubMed ID: 25322018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part IV): split spectrum processing in rotary catheter probes.
    Vuong B; Lee AM; Luk TW; Sun C; Lam S; Lane P; Yang VX
    Opt Express; 2014 Apr; 22(7):7399-415. PubMed ID: 24718115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding the peak velocity in a flow from its Doppler spectrum.
    Vilkomerson D; Ricci S; Tortoli P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2079-88. PubMed ID: 24081256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system.
    Gao SS; Liu G; Huang D; Jia Y
    Opt Lett; 2015 May; 40(10):2305-8. PubMed ID: 26393725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal power decrease due to fringe washout as an extension of the limited Doppler flow measurement range in spectral domain optical coherence tomography.
    Walther J; Mueller G; Morawietz H; Koch E
    J Biomed Opt; 2010; 15(4):041511. PubMed ID: 20799789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler fourier-domain optical coherence tomography.
    Werkmeister RM; Dragostinoff N; Palkovits S; Told R; Boltz A; Leitgeb RA; Gröschl M; Garhöfer G; Schmetterer L
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6062-71. PubMed ID: 22893675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous estimation of bidirectional particle flow and relative flux using MUSIC-OCT: phantom studies.
    Yousefi S; Wang RK
    Phys Med Biol; 2014 Nov; 59(22):6693-708. PubMed ID: 25327449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.
    Kathpalia A; Karabiyik Y; Eik-Nes SH; Tegnander E; Ekroll IK; Kiss G; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1825-1838. PubMed ID: 27824563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of computational complexity in the butterfly search technique.
    Alam SK; Parker KJ
    IEEE Trans Biomed Eng; 1996 Jul; 43(7):723-33. PubMed ID: 9216144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.