BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24760924)

  • 1. Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke.
    Lee SW; Landers KA; Park HS
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):886-98. PubMed ID: 24760924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic hand exotendon device (BiomHED) for functional hand rehabilitation in stroke.
    Lee SW; Landers KA; Park HS
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650388. PubMed ID: 24187207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback control of biomimetic exotendon device for hand rehabilitation in stroke.
    Kim DH; Lee SW; Park HS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3618-21. PubMed ID: 25570774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.
    Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Restoration of Normal Mechanics of Functional Hand Tasks Post-Stroke: Subject-Specific Approach to Reinforce Impaired Muscle Function.
    Vermillion BC; Dromerick AW; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1606-1616. PubMed ID: 31226079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process.
    Duret C; Courtial O; Grosmaire AG; Hutin E
    Biomed Res Int; 2015; 2015():482389. PubMed ID: 25821804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and design of a tendon actuated soft robotic exoskeleton for hemiparetic upper limb rehabilitation.
    Nycz CJ; Delph MA; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3889-92. PubMed ID: 26737143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke.
    Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Biomimetic Extensor Mechanism for Restoring Normal Kinematics of Finger Movements Post-Stroke.
    Kim DH; Lee SW; Park HS
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2107-2117. PubMed ID: 31484125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoring proper task mechanics of the hand post-stroke by targeted assistance of hand muscles.
    Sang Wook Lee ; Vermillion BC; Heidner GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1138-1141. PubMed ID: 29060076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Tendon-Based Mechanism for Finger Flexion and Extension in a Soft Hand Exoskeleton: Design and Experimental Assessment.
    Abdelhafiz MH; Andreasen Struijk LNS; Dosen S; Spaich EG
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training the Unimpaired Arm Improves the Motion of the Impaired Arm and the Sitting Balance in Chronic Stroke Survivors.
    De Luca A; Giannoni P; Vernetti H; Capra C; Lentino C; Checchia GA; Casadio M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):873-882. PubMed ID: 28114023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a novel robotic interface to study finger motor control.
    Cruz EG; Kamper DG
    Ann Biomed Eng; 2010 Feb; 38(2):259-68. PubMed ID: 19937469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a Soft Robotic Hand for Hand Rehabilitation in Chronic Stroke Survivors.
    Shi XQ; Heung HL; Tang ZQ; Li Z; Tong KY
    J Stroke Cerebrovasc Dis; 2021 Jul; 30(7):105812. PubMed ID: 33895427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES.
    Milot MH; Spencer SJ; Chan V; Allington JP; Klein J; Chou C; Bobrow JE; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2013 Dec; 10():112. PubMed ID: 24354476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pushing the Rehabilitation Boundaries: Hand Motor Impairment Can Be Reduced in Chronic Stroke.
    Mawase F; Cherry-Allen K; Xu J; Anaya M; Uehara S; Celnik P
    Neurorehabil Neural Repair; 2020 Aug; 34(8):733-745. PubMed ID: 32845230
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.